论文标题

海森堡小组的水平和直三角形

Horizontal and Straight Triangulations on Heisenberg Groups

论文作者

Canarecci, Giovanni

论文摘要

本文的目的是表明,在奇异的单纯词中,Heisenberg Group $ \ Mathbb {h}^n $的三角剖分都在低维和高维层上具有规律性。对于低维度,我们要求使用指数和对数的地图定义直尺度的简单概念,而我们要求我们的单纯态度概念,我们要求我们的单纯态概念,并且我们要求我们的单纯糖具有高维直的层。具有这种单纯形的三角剖分首先是在一般的多面体结构上构造的,然后扩展到整个海森堡组。在本文中,我们还提供了一些明确的网格和三角形例子。

This paper aims to show that there exists a triangulation of the Heisenberg group $\mathbb{H}^n$ into singular simplexes with regularity properties on both the low-dimensional and high-dimensional layers. For low dimensions, we request our simplexes to be horizontal while, for high dimensions, we define a notion of straight simplexes using exponential and logarithmic maps and we require our simplexes to have high-dimensional straight layers. A triangulation with such simplexes is first constructed on a general polyhedral structure and then extended to the whole Heisenberg group. In this paper we also provide some explicit examples of grid and triangulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源