论文标题

小组动作马尔可夫链蒙特卡洛(Monte Carlo)用于加速与离散对称性和能屏障的能量景观采样

Group action Markov chain Monte Carlo for accelerated sampling of energy landscapes with discrete symmetries and energy barriers

论文作者

Grasinger, Matthew

论文摘要

当势能格局以高屏障隔开的大量局部最小值为特征时,规范分布的蒙特卡洛采样会带来巨大的挑战。对这项工作的主要观察结果是,由于势能函数的离散对称性,通常会发生多个局部最小值和景观中的能屏障。提出了一种新的Monte Carlo方法,即马尔可夫链蒙特卡洛(GA-MCMC),该方法通过采用精心选择生成的离散对称组的集合集中的组动作来增强更多常规试验移动(例如随机跳跃,混合蒙特卡洛等);结果是针对对称化的MCMC的框架。结果表明,常规试验移动通常对于“局部混合”速率是最佳的,即对单个能量进行采样;尽管GA-MCMC试验移动的小组动作部分允许马尔可夫链在能量井之间传播,并可以极大地提高“全球混合”的速度。将所提出的方法与标准跳跃和雨伞采样(一种具有障碍的能量景观的流行替代品),用于具有转化,反射和旋转对称性的势能。 GA-MCMC被证明始终优于所考虑的替代方案,即使势能函数的对称性被损坏。这项工作通过将GA-MCMC扩展到用于相互作用的介电聚合物链的聚类型算法来达到顶点。 GA-MCMC不仅再次优于所考虑的替代方案,而且是唯一对所有考虑情况都持续收敛的方法。简要讨论了通过GA-MCMC推出的一些有关电介质聚合物链的电弹性的新现象。

Monte Carlo sampling of the canonical distribution presents a formidable challenge when the potential energy landscape is characterized by a large number of local minima separated by high barriers. The principal observation of this work is that the multiple local minima and energy barriers in a landscape can often occur as a result of discrete symmetries in the potential energy function. A new Monte Carlo method is proposed, group action Markov chain Monte Carlo (GA-MCMC), which augments more conventional trial moves (e.g. random jumps, hybrid Monte Carlo, etc.) with the application of a group action from a well-chosen generating set of the discrete symmetry group; the result is a framework for symmetry-adapted MCMC. It is shown that conventional trial moves are generally optimal for "local mixing" rates, i.e. sampling a single energy well; whereas the group action portion of the GA-MCMC trial move allows the Markov chain to propagate between energy wells and can vastly improve the rate of "global mixing". The proposed method is compared with standard jumps and umbrella sampling (a popular alternative for energy landscapes with barriers) for potential energies with translational, reflection, and rotational symmetries. GA-MCMC is shown to consistently outperform the considered alternatives, even when the symmetry of the potential energy function is broken. The work culminates by extending GA-MCMC to a clustering-type algorithm for interacting dielectric polymer chains. Not only does GA-MCMC again outperform the considered alternatives, but it is the only method which consistently converges for all of the cases considered. Some new and interesting phenomena regarding the electro-elasticity of dielectric polymer chains, unveiled via GA-MCMC, is briefly discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源