论文标题

通过模型汇总弥合差异隐私和拜占庭式blobustness

Bridging Differential Privacy and Byzantine-Robustness via Model Aggregation

论文作者

Zhu, Heng, Ling, Qing

论文摘要

本文旨在共同解决联邦学习中的两个看似相互矛盾的问题:差异隐私(DP)和拜占庭式企业,这在分布式数据是非I.I.D时尤其具有挑战性。 (独立且分布相同)。标准的DP机制为传输的消息增加了噪音,并与坚固的随机梯度聚集纠缠以防御拜占庭式攻击。在本文中,我们通过强大的随机模型聚合使这两个问题解除了这两个问题,这是因为我们提出的DP机制和针对拜占庭式攻击的辩护对学习绩效的影响分开了。在每次迭代时,利用强大的随机模型聚合,每个工人都计算本地模型与全局模型之间的差异,然后将元素符号发送给主节点,这使拜占庭式攻击能够鲁棒性。此外,我们设计了两种DP机制来扰动上载的符号以保存隐私,并通过利用噪声分布的属性来证明它们是$(ε,0)$ -DP。借助Moreau信封和近端投影的工具,当成本函数是非convex时,我们建立了所提出算法的收敛性。我们分析了隐私保护和学习绩效之间的权衡,并表明我们提出的DP机制的影响与强大的随机模型聚集是解耦的。数值实验证明了所提出的算法的有效性。

This paper aims at jointly addressing two seemly conflicting issues in federated learning: differential privacy (DP) and Byzantine-robustness, which are particularly challenging when the distributed data are non-i.i.d. (independent and identically distributed). The standard DP mechanisms add noise to the transmitted messages, and entangles with robust stochastic gradient aggregation to defend against Byzantine attacks. In this paper, we decouple the two issues via robust stochastic model aggregation, in the sense that our proposed DP mechanisms and the defense against Byzantine attacks have separated influence on the learning performance. Leveraging robust stochastic model aggregation, at each iteration, each worker calculates the difference between the local model and the global one, followed by sending the element-wise signs to the master node, which enables robustness to Byzantine attacks. Further, we design two DP mechanisms to perturb the uploaded signs for the purpose of privacy preservation, and prove that they are $(ε,0)$-DP by exploiting the properties of noise distributions. With the tools of Moreau envelop and proximal point projection, we establish the convergence of the proposed algorithm when the cost function is nonconvex. We analyze the trade-off between privacy preservation and learning performance, and show that the influence of our proposed DP mechanisms is decoupled with that of robust stochastic model aggregation. Numerical experiments demonstrate the effectiveness of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源