论文标题

双重模式相机的无监督的可见光图像引导的跨光谱深度深度估计

Unsupervised Visible-light Images Guided Cross-Spectrum Depth Estimation from Dual-Modality Cameras

论文作者

Guo, Yubin, Jiang, Haobo, Qi, Xinlei, Xie, Jin, Xu, Cheng-Zhong, Kong, Hui

论文摘要

跨光谱深度估计旨在通过一对双光谱图像在所有照明条件下提供深度图。当车辆配备了两个不同方式的摄像机时,它对于自动驾驶汽车应用很有价值。但是,通过不同模式摄像机捕获的图像在光度方面可能完全不同。因此,跨光谱深度估计是一个非常具有挑战性的问题。此外,大规模开源数据集的短缺还阻碍了该领域的进一步研究。在本文中,我们提出了一个无监督的可见光图像引导的跨光谱(即,且可见光的轻灯,简短的tir-vis)深度估计框架,鉴于一对RGB和一对RGB和从可见光摄像机和热摄像机捕获的热图像。我们首先使用RGB图像对采用基本深度估计网络。然后,我们提出一个多尺度特征传输网络,以将特征从TIR-VIS域转移到特征级别的VIS域,以适合受过训练的深度估计网络。最后,我们提出了一个跨光谱深度循环一致性,以改善双光谱图像对的深度结果。同时,我们发布了一个大型的双光谱深度估计数据集,其中具有可见光和远红外的立体声图像,这些立体声图像在不同的场景中捕获到社会上。实验结果表明,我们的方法比比较现有方法的性能更好。我们的数据集可在https://github.com/whitecrow1027/vis-tir-dataset上找到。

Cross-spectrum depth estimation aims to provide a depth map in all illumination conditions with a pair of dual-spectrum images. It is valuable for autonomous vehicle applications when the vehicle is equipped with two cameras of different modalities. However, images captured by different-modality cameras can be photometrically quite different. Therefore, cross-spectrum depth estimation is a very challenging problem. Moreover, the shortage of large-scale open-source datasets also retards further research in this field. In this paper, we propose an unsupervised visible-light image guided cross-spectrum (i.e., thermal and visible-light, TIR-VIS in short) depth estimation framework given a pair of RGB and thermal images captured from a visible-light camera and a thermal one. We first adopt a base depth estimation network using RGB-image pairs. Then we propose a multi-scale feature transfer network to transfer features from the TIR-VIS domain to the VIS domain at the feature level to fit the trained depth estimation network. At last, we propose a cross-spectrum depth cycle consistency to improve the depth result of dual-spectrum image pairs. Meanwhile, we release a large dual-spectrum depth estimation dataset with visible-light and far-infrared stereo images captured in different scenes to the society. The experiment result shows that our method achieves better performance than the compared existing methods. Our datasets is available at https://github.com/whitecrow1027/VIS-TIR-Datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源