论文标题
Cubble:用于组织和纠缠多元时空数据的R包装
cubble: An R Package for Organizing and Wrangling Multivariate Spatio-temporal Data
论文作者
论文摘要
多元时空数据是指跨空间和时间进行的多次测量。对于许多分析,可以单独研究空间和时间组件:例如,在一个空间位置探索一个变量的时间趋势,或在给定时间对一个变量的空间分布进行建模。但是,对于某些研究,重要的是分析同时时空数据的不同方面,例如,跨位置的多个变量的时间趋势。为了促进研究不同部分或时空数据组合的研究,我们引入了一种新的数据结构,Cubble,并具有一系列功能,可以轻松切片和对不同组件的时空组件进行切片。所提出的库布结构可确保数据的所有组件都易于访问和操纵,同时为数据分析提供了灵活性。此外,Cubble促进了数据的视觉和数值探索,同时缓解数据争吵和建模。 Cubble R软件包中提供的Cubble结构和功能使用户具有处理层次空间和时间结构的能力。澳大利亚气候数据的不同示例说明了软件包中实施的Cubble结构和工具。
Multivariate spatio-temporal data refers to multiple measurements taken across space and time. For many analyses, spatial and time components can be separately studied: for example, to explore the temporal trend of one variable for a single spatial location, or to model the spatial distribution of one variable at a given time. However for some studies, it is important to analyse different aspects of the spatio-temporal data simultaneouly, like for instance, temporal trends of multiple variables across locations. In order to facilitate the study of different portions or combinations of spatio-temporal data, we introduce a new data structure, cubble, with a suite of functions enabling easy slicing and dicing on the different components spatio-temporal components. The proposed cubble structure ensures that all the components of the data are easy to access and manipulate while providing flexibility for data analysis. In addition, cubble facilitates visual and numerical explorations of the data while easing data wrangling and modelling. The cubble structure and the functions provided in the cubble R package equip users with the capability to handle hierarchical spatial and temporal structures. The cubble structure and the tools implemented in the package are illustrated with different examples of Australian climate data.