论文标题
部分可观测时空混沌系统的无模型预测
Greenhouse Gas Emissions and its Main Drivers: a Panel Assessment for EU-27 Member States
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper assesses the effects of greenhouse gas emissions drivers in EU-27 over the period 2010-2019, using a Panel EGLS model with period fixed effects. In particular, we focused our research on studying the effects of GDP, renewable energy, households energy consumption and waste on the greenhouse gas emissions. In this regard, we found a positive relationship between three independent variables (real GDP per capita, households final consumption per capita and waste generation per capita) and greenhouse gas emissions per capita, while the effect of the share of renewable energy in gross final energy consumption on the dependent variable proved to be negative, but quite low. In addition, we demonstrate that the main challenge that affects greenhouse gas emissions is related to the structure of households energy consumption, which is generally composed by environmentally harmful fuels. This suggests the need to make greater efforts to support the shift to a green economy based on a higher energy efficiency.