论文标题
基于多个特征融合及其堆叠体系结构的旋转机器的早期故障检测方法
An Early Fault Detection Method of Rotating Machines Based on Multiple Feature Fusion with Stacking Architecture
论文作者
论文摘要
旋转机的早期故障检测(EFD)对于降低维护成本并改善机械系统稳定性很重要。 EFD的要点之一是开发一个通用模型,以从不同设备中提取鲁棒和歧视性特征,以供早期故障检测。大多数现有的EFD方法以一种类型的功能专注于学习故障表示。但是,多个功能的组合可以捕获系统状态的更全面的表示。在本文中,我们提出了一种基于与堆叠体系结构(M2FSA)的多个特征融合的EFD方法。提出的方法可以提取通用和判别性特征,以通过结合时间域(TD),频域(FD)和时频域(TFD)特征来检测早期故障。为了统一不同域特征的尺寸,使用堆叠的DeNoising自动编码器(SDAE)来学习三个域中的深度特征。拟议的M2FSA的架构由两层组成。第一层包含三个基本模型,它们的相应输入是不同的深度特征。将第一层的输出连接为将输入生成第二层的输入,该输入由元模型组成。提出的方法在三个轴承数据集上进行了测试。结果表明,所提出的方法比敏感性和可靠性方面的现有方法更好。
Early fault detection (EFD) of rotating machines is important to decrease the maintenance cost and improve the mechanical system stability. One of the key points of EFD is developing a generic model to extract robust and discriminative features from different equipment for early fault detection. Most existing EFD methods focus on learning fault representation by one type of feature. However, a combination of multiple features can capture a more comprehensive representation of system state. In this paper, we propose an EFD method based on multiple feature fusion with stacking architecture (M2FSA). The proposed method can extract generic and discriminiative features to detect early faults by combining time domain (TD), frequency domain (FD), and time-frequency domain (TFD) features. In order to unify the dimensions of the different domain features, Stacked Denoising Autoencoder (SDAE) is utilized to learn deep features in three domains. The architecture of the proposed M2FSA consists of two layers. The first layer contains three base models, whose corresponding inputs are different deep features. The outputs of the first layer are concatenated to generate the input to the second layer, which consists of a meta model. The proposed method is tested on three bearing datasets. The results demonstrate that the proposed method is better than existing methods both in sensibility and reliability.