论文标题

准确的非平稳短期交通流量预测方法

Accurate non-stationary short-term traffic flow prediction method

论文作者

Zhao, Wenzheng

论文摘要

精确,及时的交通流量预测在开发智能运输系统中起着至关重要的作用,并且在近几十年来引起了人们的关注。尽管深度学习带来的这一领域取得了重大进展,但仍然存在挑战。流量流通常在短时间内发生巨大变化,这阻止了当前方法准确捕获未来趋势并可能导致过度拟合的问题,从而导致准确性不满意。为此,本文提出了一种基于短期记忆(LSTM)的长期记忆(LSTM)方法,该方法可以精确地预测短期交通流,并避免在培训期间局部最佳问题。具体而言,我们首先将它们分解为子组件,而不是直接使用非平稳的原始流量数据,在该子组件中,每个流量数据都比原始输入不那么嘈杂。之后,采用样品熵(SE)合并相似的组件以降低计算成本。合并的特征被馈入LSTM,然后我们引入一个时空模块,以考虑重组信号中的相邻关系,以避免强大的自相关。在培训期间,我们利用灰狼算法(GWO)来优化LSTM的参数,从而克服了过度拟合问题。我们对英国公共公路交通流数据集进行了实验,结果表明,该方法对其他最先进的方法表现出色,并在极端异常值,延迟效果和趋势变化的响应方面具有更好的适应性性能。

Precise and timely traffic flow prediction plays a critical role in developing intelligent transportation systems and has attracted considerable attention in recent decades. Despite the significant progress in this area brought by deep learning, challenges remain. Traffic flows usually change dramatically in a short period, which prevents the current methods from accurately capturing the future trend and likely causes the over-fitting problem, leading to unsatisfied accuracy. To this end, this paper proposes a Long Short-Term Memory (LSTM) based method that can forecast the short-term traffic flow precisely and avoid local optimum problems during training. Specifically, instead of using the non-stationary raw traffic data directly, we first decompose them into sub-components, where each one is less noisy than the original input. Afterward, Sample Entropy (SE) is employed to merge similar components to reduce the computation cost. The merged features are fed into the LSTM, and we then introduce a spatiotemporal module to consider the neighboring relationships in the recombined signals to avoid strong autocorrelation. During training, we utilize the Grey Wolf Algorithm (GWO) to optimize the parameters of LSTM, which overcome the overfitting issue. We conduct the experiments on a UK public highway traffic flow dataset, and the results show that the proposed method performs favorably against other state-of-the-art methods with better adaption performance on extreme outliers, delay effects, and trend-changing responses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源