论文标题
霍斯克产物的压缩
Compactifications of horospheric products
论文作者
论文摘要
我们定义并研究了一种新的紧凑型,称为两棵无限树的霍斯磷产物的高度压实。我们将提供有关此紧凑型的完整描述。特别地,我们表明,当两棵树的所有顶点的程度至少三个,这也导致了busemann的精确描述,而busemann均在每棵树的几何紧凑型中,这也导致了对busemann函数的精确描述时,这种紧凑型与Busemann紧凑型同构是同构。我们将讨论对horosper产物的等轴测图中可集成的厄乳旋转共发生的渐近行为的应用。
We define and study a new compactification, called the height compactification of the horospheric product of two infinite trees. We will provide a complete description of this compactification. In particular, we show that this compactification is isomorphic to the Busemann compactification when all the vertices of both trees have degrees of at least three, which also leads to a precise description of the Busemann functions in terms of the points in the geometric compactification of each tree. We will discuss an application to the asymptotic behavior of integrable ergodic cocycles with values in the isometry group of such horospheric product.