论文标题
改进的低深度设定 - 型电路下限
Improved Low-Depth Set-Multilinear Circuit Lower Bounds
论文作者
论文摘要
我们证明,对于恒定的深度 - 式 - 媒体公式,我们证明了增强的下限。更准确地说,我们在任何字段中都表明,在$ n^2 $变量上定义了一个明确的多项式$ f $,并且$ n $的$ n $,以便任何产品深度$Δ$ set-multIlIrInearearula computing $ f $ $ f $具有至少$ n^{ω\ left(n^^weft(n^n^{n^{1/δΔΔΔΔΔΔ硬多项式$ F $来自Nisan-Wigderson(NW)基于设计的多项式。 我们的下限改进了Limaye,Srinivasan和Tavenas(STOC 2022)的最新工作,其中显示了$(\ log n)^{ω(δn^{1/δ}} $的下限,显示了产品 - $ g的大小,以相同的乘以乘坐倍数的倍数(δn^{1/δ}} $,均一变量数量与$ f $相同。此外,对于任何$δ\ geq 2 $,我们的下限都是新颖的。 对于一般的set-multilinear公式,RAZ(J。ACM 2009)已经获得了$ n^{ω(\ log n)} $形式的下限,用于多线性公式的更通用模型。 LST的技术给出了不同的途径,以设置 - 型公式下限,并允许它们获得$(\ log n)^{ω(\ log n)} $的形式的下限,以计算一般set-multinear式公式计算imm多项式的一般set-multIrineAr公式的大小。我们的证明技术是对LST的证明技术的另一种变化,使我们能够显示出$ n^{ω(\ log n)} $的改进的下限(RAZ的匹配),即正如LST所观察到的,如果可以为Imm多项式获得相同的$ n^{ω(\ log n)} $大小的小尺寸的下限,以获得无限的深度set-multilinear公式,然后使用imm的可自动性并使用硬度升级结果,这将暗示超级级别的下限。
We prove strengthened lower bounds for constant-depth set-multilinear formulas. More precisely, we show that over any field, there is an explicit polynomial $f$ in VNP defined over $n^2$ variables, and of degree $n$, such that any product-depth $Δ$ set-multilinear formula computing $f$ has size at least $n^{Ω\left( n^{1/Δ}/Δ\right)}$. The hard polynomial $f$ comes from the class of Nisan-Wigderson (NW) design-based polynomials. Our lower bounds improve upon the recent work of Limaye, Srinivasan and Tavenas (STOC 2022), where a lower bound of the form $(\log n)^{Ω(Δn^{1/Δ})}$ was shown for the size of product-depth $Δ$ set-multilinear formulas computing the iterated matrix multiplication (IMM) polynomial of the same degree and over the same number of variables as $f$. Moreover, our lower bounds are novel for any $Δ\geq 2$. For general set-multilinear formulas, a lower bound of the form $ n^{Ω(\log n)}$ was already obtained by Raz (J. ACM 2009) for the more general model of multilinear formulas. The techniques of LST give a different route to set-multilinear formula lower bounds, and allow them to obtain a lower bound of the form $(\log n)^{Ω(\log n)}$ for the size of general set-multilinear formulas computing the IMM polynomial. Our proof techniques are another variation on those of LST, and enable us to show an improved lower bound (matching that of Raz) of the form $n^{Ω(\log n)}$, albeit for the same polynomial $f$ in VNP (the NW polynomial). As observed by LST, if the same $n^{Ω(\log n)}$ size lower bounds for unbounded-depth set-multilinear formulas could be obtained for the IMM polynomial, then using the self-reducibility of IMM and using hardness escalation results, this would imply super-polynomial lower bounds for general algebraic formulas.