论文标题

高度扭曲的图

Highly twisted diagrams

论文作者

Lazarovich, Nir, Moriah, Yoav, Pinsky, Tali

论文摘要

我们证明,带有两个以上扭曲区域的3高扭曲的不可还原图的结和链接是双曲线。应将其与6高扭曲图的Futer-Purcell的结果进行比较。尽管他们的证明使用几何方法,但我们通过证明这种结或链接的补充是未耗尽和肌动物来实现的。这是通过使用涉及Euler特征参数的新方法来完成的。

We prove that the knots and links that admit a 3-highly twisted irreducible diagram with more than two twist regions are hyperbolic. This should be compared with a result of Futer-Purcell for 6-highly twisted diagrams. While their proof uses geometric methods our proof is achieved by showing that the complements of such knots or links are unannular and atoroidal. This is done by using a new approach involving an Euler characteristic argument.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源