论文标题
结果和拥塞意识到最佳路由和在协作边缘计算中的部分卸载
Result and Congestion Aware Optimal Routing and Partial Offloading in Collaborative Edge Computing
论文作者
论文摘要
协作边缘计算(CEC)是一个新兴的范式,在其中共享通信和计算资源通过共享通信和计算资源,在其中,异质的边缘设备(利益相关者)协作以完成计算任务,例如模型培训或视频处理。然而,使用任意拓扑的CEC中的最佳数据/结果路由和计算策略仍然是一个开放的问题。在本文中,我们为任意可划分的任务制定了部分偏移和多跳路由模型。每个节点分别决定收到数据的计算以及数据/结果流量的转发。与大多数现有作品相反,我们的模型适用于具有不可忽略的结果大小的任务,并启用可分离的数据源和结果目的地。我们提出了一个范围内的网络成本最小化问题,并通过拥塞感知成本共同优化路由和计算卸载。该问题涵盖了各种性能指标和约束,例如平均排队延迟,处理器容量有限。尽管该问题是非凸的,但我们为全球最佳解决方案提供了非平凡的必要条件,并设计了一种完全分布的算法,该算法在多项式时间内收敛到最佳,允许异步的个体更新,并适应网络拓扑或任务模式的变化。数值评估表明,我们提出的方法在多个网络实例中,尤其是在拥挤的方案中明显优于其他基线算法。
Collaborative edge computing (CEC) is an emerging paradigm where heterogeneous edge devices (stakeholders) collaborate to fulfill computation tasks, such as model training or video processing, by sharing communication and computation resources. Nevertheless, the optimal data/result routing and computation offloading strategy in CEC with arbitrary topology still remains an open problem. In this paper, we formulate a partial-offloading and multi-hop routing model for arbitrarily divisible tasks. Each node individually decides the computation of the received data and the forwarding of data/result traffic. In contrast to most existing works, our model applies to tasks with non-negligible result size, and enables separable data sources and result destinations. We propose a network-wide cost minimization problem with congestion-aware cost to jointly optimize routing and computation offloading. This problem covers various performance metrics and constraints, such as average queueing delay with limited processor capacity. Although the problem is non-convex, we provide non-trivial necessary and sufficient conditions for the global-optimal solution, and devise a fully distributed algorithm that converges to the optimum in polynomial time, allows asynchronous individual updating, and is adaptive to changes in network topology or task pattern. Numerical evaluation shows that our proposed method significantly outperforms other baseline algorithms in multiple network instances, especially in congested scenarios.