论文标题

社交机器人技术的数据驱动情感肢体语言生成

Data-driven emotional body language generation for social robotics

论文作者

Marmpena, Mina, Garcia, Fernando, Lim, Angelica, Hemion, Nikolas, Wennekers, Thomas

论文摘要

在社会机器人技术中,赋予人形机器人具有产生身体表达的能力,可以改善人类机器人的互动和协作,因为人类归因于人类,并且可能是潜意识地预期的,这样的痕迹可以将特工视为引人入胜的,值得信赖的,可信赖的和社会上的痕迹。机器人的情感肢体语言需要可信,细微差别且与上下文相关。我们实施了一个深度学习数据驱动的框架,该框架从一些手工设计的机器人身体表达中学习,并可以产生许多具有相似可信度和终身性的新的。该框架使用条件变分自动编码器模型和基于模型潜在空间的几何特性的采样方法,以在目标价和唤醒的目标水平上调节生成过程。评估研究发现,生成的表达式的拟人化和动画与手工设计的表达式不同,并且在大多数级别之间,情绪调节是充分的分化,除了中性阳性的成对和低中期的唤醒。此外,对结果的探索性分析揭示了调节对机器人感知优势以及参与者注意的可能影响。

In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration, since humans attribute, and perhaps subconsciously anticipate, such traces to perceive an agent as engaging, trustworthy, and socially present. Robotic emotional body language needs to be believable, nuanced and relevant to the context. We implemented a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions and can generate numerous new ones of similar believability and lifelikeness. The framework uses the Conditional Variational Autoencoder model and a sampling approach based on the geometric properties of the model's latent space to condition the generative process on targeted levels of valence and arousal. The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones, and the emotional conditioning was adequately differentiable between most levels except the pairs of neutral-positive valence and low-medium arousal. Furthermore, an exploratory analysis of the results reveals a possible impact of the conditioning on the perceived dominance of the robot, as well as on the participants' attention.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源