论文标题

非对称过程的马尔可夫链近似

Markov chain approximations for nonsymmetric processes

论文作者

Weidner, Marvin

论文摘要

本文的目的是证明,在$ n^{ - 1} \ Mathbb {z}^d $上,可以通过合适的Markov链在$ \ mathbb {r}^d $中进行的扩散过程近似。此外,我们研究了足够的电导条件,以确保相关的马尔可夫链与此类马尔可夫过程的收敛。对于大量非对称跳跃过程,回答了类似的问题。我们结果的证明取决于对相应的非对称抛物线方程和Dirichlet形式技术的弱解决方案的规律性估计。

The aim of this article is to prove that diffusion processes in $\mathbb{R}^d$ with a drift can be approximated by suitable Markov chains on $n^{-1}\mathbb{Z}^d$. Moreover, we investigate sufficient conditions on the conductances which guarantee convergence of the associated Markov chains to such Markov processes. Analogous questions are answered for a large class of nonsymmetric jump processes. The proofs of our results rely on regularity estimates for weak solutions to the corresponding nonsymmetric parabolic equations and Dirichlet form techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源