论文标题

无界树木的匹配的加权计数家族

Weighted Counting of Matchings in Unbounded-Treewidth Graph Families

论文作者

Amarilli, Antoine, Monet, Mikaël

论文摘要

我们考虑了在匹配项上的加权计数问题,表示为$ \ textrm {prMatching}(\ Mathcal {g})$,在任意固定的图形系列$ \ mathcal {g} $上。输入由\ Mathcal {g} $中的图$ g \组成,以及假设独立性的$ g $的每个边缘上存在的理性概率。输出是在产生的分布中获得$ g $的匹配的概率,即一组成对差异的边缘。众所周知,如果$ \ Mathcal {g} $具有界限,则可以在多项式时间内解决$ \ textrm {prMatching}(\ Mathcal {g})$。在本文中,我们表明,在某些假设下,有界的树宽实际上是为此问题的可拖动图家族的特征。更准确地说,我们对所有图形系族都表现出难以理解的性能,$ \ MATHCAL {g} $满足以下treewidth-constructibility要求:给定一个Unary的整数$ k $,我们可以在多项式时间内构造\ Mathcal {g} $ in \ Mathcal {g} $,至少具有$ k $。然后,我们的硬度结果如下:对于任何树宽构造的图形nameres $ \ mathcal {g} $,问题$ \ textrm {prMatching}(\ Mathcal {g})$是棘手的。这概括了在某些没有结合过树宽的限制下的加权匹配计数的已知硬度结果,例如,是平面,3型或两分;它还回答了在Amarilli,Bourhis和Senellart(Pods'16)中剩下的一个问题。我们还获得了一个类似的下限,用于边缘盖的加权计数。

We consider a weighted counting problem on matchings, denoted $\textrm{PrMatching}(\mathcal{G})$, on an arbitrary fixed graph family $\mathcal{G}$. The input consists of a graph $G\in \mathcal{G}$ and of rational probabilities of existence on every edge of $G$, assuming independence. The output is the probability of obtaining a matching of $G$ in the resulting distribution, i.e., a set of edges that are pairwise disjoint. It is known that, if $\mathcal{G}$ has bounded treewidth, then $\textrm{PrMatching}(\mathcal{G})$ can be solved in polynomial time. In this paper we show that, under some assumptions, bounded treewidth in fact characterizes the tractable graph families for this problem. More precisely, we show intractability for all graph families $\mathcal{G}$ satisfying the following treewidth-constructibility requirement: given an integer $k$ in unary, we can construct in polynomial time a graph $G \in \mathcal{G}$ with treewidth at least $k$. Our hardness result is then the following: for any treewidth-constructible graph family $\mathcal{G}$, the problem $\textrm{PrMatching}(\mathcal{G})$ is intractable. This generalizes known hardness results for weighted matching counting under some restrictions that do not bound treewidth, e.g., being planar, 3-regular, or bipartite; it also answers a question left open in Amarilli, Bourhis and Senellart (PODS'16). We also obtain a similar lower bound for the weighted counting of edge covers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源