论文标题

N形分区方法:曲柄Nicolson算法的新型平行实现

The N-shaped partition method: A novel parallel implementation of the Crank Nicolson algorithm

论文作者

Lutsyshyn, Yaroslav, Navarrete, Francisco, Bauer, Dieter

论文摘要

我们开发了一种算法来求解线性方程的三角形系统,该算法以偏微分方程(PDES)的隐式有限差异方案(PDES)出现,是时间依赖性的Schrödinger方程(TDSE),是一个理想的候选者,可以从中受益。我们的N形分区方法优化了在没有内存大小约束的情况下对并行体系结构上的数值计算的实现。具体而言,我们讨论了在图形处理单元(GPU)和消息传递接口(MPI)上实现我们的方法的实现。在GPU实施中,我们的方案对于超过单个处理器全局内存的系统尤其有利。此外,由于其缺乏内存约束和算法的通用性,因此非常适合混合体系结构,通常在大型高性能计算(HPC)中心提供。我们还提供了实现算法的最佳参数的分析估计,并在数值上测试了我们公式在GPU实现中的适用性。我们的方法将有助于解决需要大量空间网格的问题,因为较大的共享记忆要求和计算时间,否则AB-Initio研究可能会过时。

We develop an algorithm to solve tridiagonal systems of linear equations, which appear in implicit finite-difference schemes of partial differential equations (PDEs), being the time-dependent Schrödinger equation (TDSE) an ideal candidate to benefit from it. Our N-shaped partition method optimizes the implementation of the numerical calculation on parallel architectures, without memory size constraints. Specifically, we discuss the realization of our method on graphics processing units (GPUs) and the Message Passing Interface (MPI). In GPU implementations, our scheme is particularly advantageous for systems whose size exceeds the global memory of a single processor. Moreover, because of its lack of memory constraints and the generality of the algorithm, it is well-suited for mixed architectures, typically available in large high performance computing (HPC) centers. We also provide an analytical estimation of the optimal parameters to implement our algorithm, and test numerically the suitability of our formula in a GPU implementation. Our method will be helpful to tackle problems which require large spatial grids for which ab-initio studies might be otherwise prohibitive both because of large shared-memory requirements and computation times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源