论文标题

贝叶斯对瑞典的Covid-19的监测

Bayesian Monitoring of COVID-19 in Sweden

论文作者

Marin, Robin, Runvik, Håkan, Medvedev, Alexander, Engblom, Stefan

论文摘要

为了为公共医疗保健提供区域决策支持,我们在瑞典设计了基于数据驱动的Covid-19的模型。从国家医院统计数据中,我们得出参数先验,并开发了线性过滤技术,以每天医疗保健需求的形式推动给定数据的模拟。我们还提出了一个后边缘估计器,该估计器可改善对繁殖数估计值的时间分辨率,并通过参数引导程序支持稳健性检查。 从我们的计算方法中,我们获得了预测价值的贝叶斯模型,该模型可为疾病的进展提供重要的见解,包括估计有效繁殖数,感染死亡率和区域水平的免疫力。我们成功地验证了我们的后验模型针对多种不同来源,包括广泛筛选程序的输出。由于比较所需的数据很容易且不敏感,因此我们认为我们的方法特别有前途作为支持公共卫生中监视和决策的工具。

In an effort to provide regional decision support for the public healthcare, we design a data-driven compartment-based model of COVID-19 in Sweden. From national hospital statistics we derive parameter priors, and we develop linear filtering techniques to drive the simulations given data in the form of daily healthcare demands. We additionally propose a posterior marginal estimator which provides for an improved temporal resolution of the reproduction number estimate as well as supports robustness checks via a parametric bootstrap procedure. From our computational approach we obtain a Bayesian model of predictive value which provides important insight into the progression of the disease, including estimates of the effective reproduction number, the infection fatality rate, and the regional-level immunity. We successfully validate our posterior model against several different sources, including outputs from extensive screening programs. Since our required data in comparison is easy and non-sensitive to collect, we argue that our approach is particularly promising as a tool to support monitoring and decisions within public health.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源