论文标题
3D卷积神经网络,用于使用微调和超参数优化的树突分割
3D Convolutional Neural Networks for Dendrite Segmentation Using Fine-Tuning and Hyperparameter Optimization
论文作者
论文摘要
树突小结构本质上是普遍存在的,是金属材料中的主要固化形态。 X射线计算机断层扫描(XCT)等技术为树突相变现象提供了新的见解。但是,显微镜数据中树突状形态的手动鉴定可能是劳动密集型和可能模棱两可的。由于3D数据集的分析尤其具有挑战性,这是由于它们的较大尺寸(Terabytes)以及成像体积中散布的伪影的存在。在这项研究中,我们培训了3D卷积神经网络(CNN)以段3D数据集。研究了三个CNN架构,包括新的3D版本的FCDENSE。我们表明,使用超参数优化(HPO)和微调技术,可以训练2D和3D CNN体系结构,以超越先前的最新状态。这项研究中训练的3D U-NET体系结构根据定量指标(像素的精度为99.84%,边界位移误差为0.58像素)产生了最佳分割,而3D FCDENSE产生了最佳的边界和最佳片段和最佳分割。受过训练的3D CNN能够在仅60秒内将整个852 x 852 x 250素体3D体积分割,从而加速了对相变现象(例如树突状固化)的进步。
Dendritic microstructures are ubiquitous in nature and are the primary solidification morphologies in metallic materials. Techniques such as x-ray computed tomography (XCT) have provided new insights into dendritic phase transformation phenomena. However, manual identification of dendritic morphologies in microscopy data can be both labor intensive and potentially ambiguous. The analysis of 3D datasets is particularly challenging due to their large sizes (terabytes) and the presence of artifacts scattered within the imaged volumes. In this study, we trained 3D convolutional neural networks (CNNs) to segment 3D datasets. Three CNN architectures were investigated, including a new 3D version of FCDense. We show that using hyperparameter optimization (HPO) and fine-tuning techniques, both 2D and 3D CNN architectures can be trained to outperform the previous state of the art. The 3D U-Net architecture trained in this study produced the best segmentations according to quantitative metrics (pixel-wise accuracy of 99.84% and a boundary displacement error of 0.58 pixels), while 3D FCDense produced the smoothest boundaries and best segmentations according to visual inspection. The trained 3D CNNs are able to segment entire 852 x 852 x 250 voxel 3D volumes in only ~60 seconds, thus hastening the progress towards a deeper understanding of phase transformation phenomena such as dendritic solidification.