论文标题

有效优化具有自动生成伴随的区域水位高程模型

Efficient optimization of a regional water elevation model with an automatically generated adjoint

论文作者

Kärnä, Tuomas, Wallwork, Joseph G., Kramer, Stephan C.

论文摘要

在许多海洋模型应用中,未知模型参数的校准是一项常见的任务。我们提供了基于伴随的波罗的海网眼浅水模型的优化。对空间变化的底部摩擦参数进行了调整,以最大程度地减少潮汐量规海面高度(SSH)观测值的失误。基于伴随的优化的关键好处是,计算成本不取决于未知变量的数量。但是,伴随模型通常非常费力地实施。在这项工作中,我们利用一个特定的语言框架,可以自动获得离散的伴随模型。伴随模型既与离散的正向模型完全兼容,又是计算上有效的。一种基于梯度的准牛顿方法用于最大程度地减少失配。优化空间变化的参数通常是一个不确定的问题,可能导致过度拟合。我们采用基于黑森的正规化来惩罚摩擦场的空间曲率以克服这一问题。波罗的海的SSH动力学模拟了3个月。底部摩擦参数的优化导致模型性能的显着改善。在复杂的丹麦海峡地区,结果尤其令人鼓舞,强调了非结构化网格的好处。域特定的语言框架可以实现自动模型分析,并可以轻松访问伴随建模。我们的应用程序表明,几乎没有努力可以实现此功能,并且优化过程是强大的,并且在计算上有效。

Calibration of unknown model parameters is a common task in many ocean model applications. We present an adjoint-based optimization of an unstructured mesh shallow water model for the Baltic Sea. Spatially varying bottom friction parameter is tuned to minimize the misfit with respect to tide gauge sea surface height (SSH) observations. A key benefit of adjoint-based optimization is that computational cost does not depend on the number of unknown variables. Adjoint models are, however, typically very laborious to implement. In this work, we leverage a domain specific language framework in which the discrete adjoint model can be obtained automatically. The adjoint model is both exactly compatible with the discrete forward model and computationally efficient. A gradient-based quasi-Newton method is used to minimize the misfit. Optimizing spatially-variable parameters is typically an under-determined problem and can lead to over-fitting. We employ Hessian-based regularization to penalize the spatial curvature of the friction field to overcome this problem. The SSH dynamics in the Baltic Sea are simulated for a 3-month period. Optimization of the bottom friction parameter results in significant improvement of the model performance. The results are especially encouraging in the complex Danish Straits region, highlighting the benefit of unstructured meshes. Domain specific language frameworks enable automated model analysis and provide easy access to adjoint modeling. Our application shows that this capability can be enabled with few efforts, and the optimization procedure is robust and computationally efficient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源