论文标题
扩散近似辐射流体动力学模型的解决方案的大时间行为
Large time behavior of solutions to a diffusion approximation radiation hydrodynamics model
论文作者
论文摘要
本文涉及解决方案对扩散近似辐射流体动力学模型的较大时间行为,当时初始数据是平衡状态周围的小扰动。在Sobolev的空间中,实现了溶液的全球时间良好性,具体取决于Littlewood-Paley分解技术,以及频率空间中的某些详尽的能量估计。此外,如果初始数据还满足额外的$ l^1 $条件,也会产生解决方案的最佳衰减率。同时,还可以建立没有导热率的扩散近似系统的相似结果。
This paper concerns with the large time behavior of solutions to a diffusion approximation radiation hydrodynamics model when the initial data is a small perturbation around an equilibrium state. The global-in-time well-posedness of solutions is achieved in Sobolev spaces depending on the Littlewood-Paley decomposition technique together with certain elaborate energy estimates in frequency space. Moreover, the optimal decay rate of the solution is also yielded provided the initial data also satisfy an additional $L^1$ condition. Meanwhile, the similar results of the diffusion approximation system without the thermal conductivity could be also established.