论文标题
基本明亮孤子解决方案的傅立叶光谱和相关特性
Fourier spectrum and related characteristics of the fundamental bright soliton solution
论文作者
论文摘要
我们为$(1 + 1)$ - 尺寸非线性schrödinger方程的基本明亮孤子解决方案的空间傅立叶频谱提供了精确的分析表达式。与高斯剖面相似,双曲线割线形状的傅立叶变换也具有形状保护。我们进一步确认,基本的孤儿确实满足了诸如Parseval的关系和伸缩宽度互惠关系等基本特征。基本的明亮孤子可以在非线性光纤和光学电信系统中找到丰富的应用。
We derive exact analytical expressions for the spatial Fourier spectrum of the fundamental bright soliton solution for the $(1 + 1)$-dimensional nonlinear Schrödinger equation. Similar to a Gaussian profile, the Fourier transform for the hyperbolic secant shape is also shape-preserving. We further confirm that the fundamental soliton indeed satisfies essential characteristics such as Parseval's relation and the stretch-bandwidth reciprocity relationship. The fundamental bright solitons find rich applications in nonlinear fiber optics and optical telecommunication systems.