论文标题
在3D GRMHD模拟中的二进制中子星合并后的喷射范围相互作用上
On the jet-ejecta interaction in 3D GRMHD simulations of binary neutron star merger aftermath
论文作者
论文摘要
短$γ$ -Ray爆发(SGRB)喷气机在中子星合并后形成,通过磁盘风和动态喷射钻出,并在距离中延伸超过四到五个数量级,然后突破喷射。我们介绍了第一个3D通用磁性磁流失动力学SGRB模拟,以跨越这种巨大的尺度分离。它们具有三个可能的结果:Jet+Cocoon,Cocoon和not。 Typical sGRB jets break out of the dynamical ejecta if (i) the bound ejecta's isotropic equivalent mass along the pole at the time of the BH formation is $ \lesssim10^{-4}~{\rm M_{\odot}} $, setting a limit on the delay time between the merger and BH formation, otherwise, the jets perish inside the ejecta and leave the喷射膨胀的茧为低亮度SGRB供电; (ii)合并后的残留磁盘包含强大的大规模垂直磁场,$ \ gtrsim10^{15} $ g; (iii)如果喷气机很弱($ \ lyssim10^{50} $ erg),则沿极点沿射线的同型等价质量必须很小($ \ sillsim10^{ - 2}〜{\ rm m m _ {\ rm m _ {\ odot}} $)。通常,射流结构是由与磁盘风的早期相互作用而不是动态喷射的。只要我们的喷气机从弹射器中断出来,它们就会保留大量的磁化($ \ lyssim1 $),这表明磁重新连接是SGRB发射的基本属性。突破后流出各向同性等效能量的角结构始终具有平坦的核心,然后具有陡峭的幂律分布(斜率$ \ gtrsim3 $),类似于流体动力射流。在仅茧的结果中,动态喷射会扩大流出角度分布并使之变平(坡度$ \ sim1.5 $)。
Short $γ$-ray burst (sGRB) jets form in the aftermath of a neutron star merger, drill through disk winds and dynamical ejecta, and extend over four to five orders of magnitude in distance before breaking out of the ejecta. We present the first 3D general-relativistic magnetohydrodynamic sGRB simulations to span this enormous scale separation. They feature three possible outcomes: jet+cocoon, cocoon, and neither. Typical sGRB jets break out of the dynamical ejecta if (i) the bound ejecta's isotropic equivalent mass along the pole at the time of the BH formation is $ \lesssim10^{-4}~{\rm M_{\odot}} $, setting a limit on the delay time between the merger and BH formation, otherwise, the jets perish inside the ejecta and leave the jet-inflated cocoon to power a low-luminosity sGRB; (ii) the post-merger remnant disk contains strong large-scale vertical magnetic field, $\gtrsim10^{15}$ G; and (iii) if the jets are weak ($\lesssim10^{50}$ erg), the ejecta's isotropic equivalent mass along the pole must be small ($\lesssim10^{-2}~{\rm M_{\odot}}$). Generally, the jet structure is shaped by the early interaction with disk winds rather than the dynamical ejecta. As long as our jets break out of the ejecta, they retain a significant magnetization ($\lesssim1$), suggesting that magnetic reconnection is a fundamental property of sGRB emission. The angular structure of the outflow isotropic equivalent energy after breakout consistently features a flat core followed by a steep power-law distribution (slope $\gtrsim3$), similar to hydrodynamic jets. In the cocoon-only outcome, the dynamical ejecta broadens the outflow angular distribution and flattens it (slope $\sim1.5$).