论文标题

来自收缩的量子本质量的多屈服模拟,而没有波函数

Many-Fermion Simulation from the Contracted Quantum Eigensolver without Fermionic Encoding of the Wave Function

论文作者

Smart, Scott E., Mazziotti, David A.

论文摘要

量子计算机可能比经典计算机具有指数优势,用于对多个特量子量子系统的量子模拟。尽管如此,由于费米子编码,费米子的模拟比玻色子更昂贵 - 该映射是用费米昂统计编码量子的绘制图。在这里,我们概括了合同的量子本素(CQE),以避免使用波函数的费米子编码。与变异量子本质量器相反,CQE通过将Schrödinger方程的收缩(投影)最小化到两个费米子上,从而求解了多个特里米的静止状态。我们通过将schrödinger方程收缩到未编码的一对粒子上来避免对波函数的费物代码编码。通过一系列未编码的两体指数转换的结合方程解的解会产生一个未编码的波函数,从而可以从中计算出能量和两倍的降低密度矩阵(2-RDM)。我们将未编码和编码的CQE算法应用于氟化氢分子,氧o $ $ _ {2} $的解离以及一系列的氢链。两种算法都表现出与确切的基态能量和2-RDM的可比收敛性,但是未编码的算法在状态制备和层析成像方面具有计算优势。

Quantum computers potentially have an exponential advantage over classical computers for the quantum simulation of many-fermion quantum systems. Nonetheless, fermions are more expensive to simulate than bosons due to the fermionic encoding -- a mapping by which the qubits are encoded with fermion statistics. Here we generalize the contracted quantum eigensolver (CQE) to avoid fermionic encoding of the wave function. In contrast to the variational quantum eigensolver, the CQE solves for a many-fermion stationary state by minimizing the contraction (projection) of the Schrödinger equation onto two fermions. We avoid fermionic encoding of the wave function by contracting the Schrödinger equation onto an unencoded pair of particles. Solution of the resulting contracted equation by a series of unencoded two-body exponential transformations generates an unencoded wave function from which the energy and two-fermion reduced density matrix (2-RDM) can be computed. We apply the unencoded and the encoded CQE algorithms to the hydrogen fluoride molecule, the dissociation of oxygen O$_{2}$, and a series of hydrogen chains. Both algorithms show comparable convergence towards the exact ground-state energies and 2-RDMs, but the unencoded algorithm has computational advantages in terms of state preparation and tomography.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源