论文标题
在最高度4的3个冠状动脉图上的色顶稳定性上
On chromatic vertex stability of 3-chromatic graphs with maximum degree 4
论文作者
论文摘要
(独立的)色顶点稳定性($ \ ivs(g)$)$ \ vs(g)$是(独立)集合$ s \ subseteq v(g)$的最小尺寸,因此$χ(g-s)=χ(g)-1 $。在本文中,我们用$δ(g)= 4 $,$χ(g)= 3 $,$ \ ivs(g)= 3 $和$ \ vs(g)= 2 $构建无限的许多图$ g $,这给出了\ cite {abkm}}中提出的问题的部分负面答案。
The (independent) chromatic vertex stability ($\ivs(G)$) $\vs(G)$ is the minimum size of (independent) set $S\subseteq V(G)$ such that $χ(G-S)=χ(G)-1$. In this paper we construct infinitely many graphs $G$ with $Δ(G)=4$, $χ(G)=3$, $\ivs(G)=3$ and $\vs(G)=2$, which gives a partial negative answer to a problem posed in \cite{ABKM}.