论文标题

人群中有历史信息和互动的人群中的多人机器人导航

Multi-subgoal Robot Navigation in Crowds with History Information and Interactions

论文作者

Yu, Xinyi, Hu, Jianan, Fan, Yuehai, Zheng, Wancai, Ou, Linlin

论文摘要

在与人类共享的动态环境中的机器人导航是一项重要但具有挑战性的任务,随着人群的增长,绩效恶化遭受了损害。在本文中,提出了基于深入强化学习的多人机器人导航方法,这可以理解所有代理商(机器人和人类)之间更全面的关系。具体而言,通过在我们的工作中介绍历史信息和互动来为机器人计划下一个位置点。首先,基于子图网络,在通过图神经网络编码交互之前,所有代理的历史信息都是汇总的,以提高机器人隐含地预测未来方案的能力。进一步的考虑,为了减少不可靠的下一个位置点的可能性,选择模块是根据加强学习框架中的策略网络设计的。此外,选择模块生成的下一个位置点比直接从策略网络获得的任务要求更满足了任务要求。实验表明,就成功率和碰撞率而言,我们的方法的表现优于最先进的方法,尤其是在拥挤的人类环境中。

Robot navigation in dynamic environments shared with humans is an important but challenging task, which suffers from performance deterioration as the crowd grows. In this paper, multi-subgoal robot navigation approach based on deep reinforcement learning is proposed, which can reason about more comprehensive relationships among all agents (robot and humans). Specifically, the next position point is planned for the robot by introducing history information and interactions in our work. Firstly, based on subgraph network, the history information of all agents is aggregated before encoding interactions through a graph neural network, so as to improve the ability of the robot to anticipate the future scenarios implicitly. Further consideration, in order to reduce the probability of unreliable next position points, the selection module is designed after policy network in the reinforcement learning framework. In addition, the next position point generated from the selection module satisfied the task requirements better than that obtained directly from the policy network. The experiments demonstrate that our approach outperforms state-of-the-art approaches in terms of both success rate and collision rate, especially in crowded human environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源