论文标题
用于多曝光推框卫星的自我监督超分辨率
Self-Supervised Super-Resolution for Multi-Exposure Push-Frame Satellites
论文作者
论文摘要
现代地球观察卫星捕获了可以通过计算手段超级分辨的推框图像的多曝光爆发。在这项工作中,我们为这种多曝光序列提出了一种超分辨率方法,这个问题在文献中很少关注。所提出的方法可以处理输入中的信号依赖性噪声,任何长度的过程序列,并在曝光时间内对不准确。此外,它可以通过自学意义进行端到端训练,而无需地面真相高分辨率框架,这使其特别适合处理真实数据。我们方法的核心是三个关键贡献:i)用于处理曝光时间中错误的基本详细分解,ii)编码噪声级感知的特征,用于改善信号 - 噪声比和iii的帧融合,并通过临时合并操作员进行置换式融合策略。我们评估了有关合成和真实数据的提议方法,并表明,它通过适应多暴露情况的现有单次曝光方法优于现有的单曝光方法。
Modern Earth observation satellites capture multi-exposure bursts of push-frame images that can be super-resolved via computational means. In this work, we propose a super-resolution method for such multi-exposure sequences, a problem that has received very little attention in the literature. The proposed method can handle the signal-dependent noise in the inputs, process sequences of any length, and be robust to inaccuracies in the exposure times. Furthermore, it can be trained end-to-end with self-supervision, without requiring ground truth high resolution frames, which makes it especially suited to handle real data. Central to our method are three key contributions: i) a base-detail decomposition for handling errors in the exposure times, ii) a noise-level-aware feature encoding for improved fusion of frames with varying signal-to-noise ratio and iii) a permutation invariant fusion strategy by temporal pooling operators. We evaluate the proposed method on synthetic and real data and show that it outperforms by a significant margin existing single-exposure approaches that we adapted to the multi-exposure case.