论文标题
DeepporTraitDrawing:从徒手草图中生成人体图像
DeepPortraitDrawing: Generating Human Body Images from Freehand Sketches
论文作者
论文摘要
研究人员探索了各种方法来从徒手草图中生成逼真的图像,例如对象和人脸。但是,如何从草图中产生现实的人体图像仍然是一个具有挑战性的问题。首先,由于对人形的敏感性,其次是由于人体形状和姿势变化引起的人类图像的复杂性,而第三,由于逼真的图像和徒手草图之间的域间隙。在这项工作中,我们提出了DeepporTraitDrawing,这是将大致绘制的草图转换为现实的人体图像的深层生成框架。为了在各种姿势下编码复杂的身体形状,我们采用局部到全球的方法。在本地,我们采用语义零件自动编码器来构建零件级别的形状空间,这对于完善输入预分段的手绘草图的几何形状非常有用。在全球范围内,我们采用级联的空间变压器网络,通过调整空间位置和相对比例来完善身体部位的结构。最后,我们使用全局合成网络来进行素描到图像翻译任务,并使用面部细化网络来增强面部细节。广泛的实验表明,鉴于人类肖像的大致草图,我们的方法比最先进的素描到图像合成技术产生的图像更现实。
Researchers have explored various ways to generate realistic images from freehand sketches, e.g., for objects and human faces. However, how to generate realistic human body images from sketches is still a challenging problem. It is, first because of the sensitivity to human shapes, second because of the complexity of human images caused by body shape and pose changes, and third because of the domain gap between realistic images and freehand sketches. In this work, we present DeepPortraitDrawing, a deep generative framework for converting roughly drawn sketches to realistic human body images. To encode complicated body shapes under various poses, we take a local-to-global approach. Locally, we employ semantic part auto-encoders to construct part-level shape spaces, which are useful for refining the geometry of an input pre-segmented hand-drawn sketch. Globally, we employ a cascaded spatial transformer network to refine the structure of body parts by adjusting their spatial locations and relative proportions. Finally, we use a global synthesis network for the sketch-to-image translation task, and a face refinement network to enhance facial details. Extensive experiments have shown that given roughly sketched human portraits, our method produces more realistic images than the state-of-the-art sketch-to-image synthesis techniques.