论文标题

Anubis:骨架动作识别数据集,评论和基准测试

ANUBIS: Skeleton Action Recognition Dataset, Review, and Benchmark

论文作者

Qin, Zhenyue, Liu, Yang, Perera, Madhawa, Gedeon, Tom, Ji, Pan, Kim, Dongwoo, Anwar, Saeed

论文摘要

基于骨架的动作识别是行动识别的子区域,正在迅速积累关注和流行。任务是识别人类发音点执行的行动。与其他数据模式相比,3D人类骨骼表示具有广泛的独特理想特征,包括简洁,鲁棒性,种族障碍等等。我们旨在为新的和现有的研究人员提供有关新研究人员和现有研究人员基于骨架的行动识别的景观的路线图。为此,我们对基于骨架的行动识别的现有作品的分类法进行了审查。我们将它们分为四个主要类别:(1)数据集; (2)提取空间特征; (3)捕获时间模式; (4)提高信号质量。对于每种方法,我们提供简洁但信息丰富的描述。为了促进对基于骨架的行动识别方法的现有方法的更公平,更全面的评估,我们收集了一个大规模的人类骨架数据集Anubis。与先前收集的数据集相比,Anubis在以下四个方面是有利的:(1)使用最近发布的传感器; (2)包含新颖的背景; (3)鼓励高度的主题热情; (4)包括共同大流行时代的行动。使用Anubis,我们基于当前的基于骨架的动作识别器的基准性能。在本文的最后,我们通过列出几个新的技术问题来展现基于骨架的动作识别的未来发展。我们认为,他们可以在不久的将来将基于骨架的行动识别商业化,以便解决方案。 Anubis的数据集可在以下网址获得:http://hcc-workshop.anu.edu.au/webs/anu101/home。

Skeleton-based action recognition, as a subarea of action recognition, is swiftly accumulating attention and popularity. The task is to recognize actions performed by human articulation points. Compared with other data modalities, 3D human skeleton representations have extensive unique desirable characteristics, including succinctness, robustness, racial-impartiality, and many more. We aim to provide a roadmap for new and existing researchers a on the landscapes of skeleton-based action recognition for new and existing researchers. To this end, we present a review in the form of a taxonomy on existing works of skeleton-based action recognition. We partition them into four major categories: (1) datasets; (2) extracting spatial features; (3) capturing temporal patterns; (4) improving signal quality. For each method, we provide concise yet informatively-sufficient descriptions. To promote more fair and comprehensive evaluation on existing approaches of skeleton-based action recognition, we collect ANUBIS, a large-scale human skeleton dataset. Compared with previously collected dataset, ANUBIS are advantageous in the following four aspects: (1) employing more recently released sensors; (2) containing novel back view; (3) encouraging high enthusiasm of subjects; (4) including actions of the COVID pandemic era. Using ANUBIS, we comparably benchmark performance of current skeleton-based action recognizers. At the end of this paper, we outlook future development of skeleton-based action recognition by listing several new technical problems. We believe they are valuable to solve in order to commercialize skeleton-based action recognition in the near future. The dataset of ANUBIS is available at: http://hcc-workshop.anu.edu.au/webs/anu101/home.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源