论文标题

学习计划的抽象且可转让的表示形式

Learning Abstract and Transferable Representations for Planning

论文作者

James, Steven, Rosman, Benjamin, Konidaris, George

论文摘要

我们关心的是代理如何从感官数据中获取自己的表示形式的问题。我们将重点限制为长期计划的学习表征,这是最先进的学习方法无法解决的一类问题。我们提出了一个框架,用于自主学习对代理商环境的抽象,鉴于一组技能。重要的是,这些抽象是与任务无关的,因此可以重复使用以解决新任务。我们演示了代理如何使用现有的一组选项来从自我和对象中心观察中获取表示形式。这些抽象可以立即由新环境中的同一代理重复使用。我们展示了如何将这些便携式表示形式与特定问题的表示形式相结合,以生成可用于抽象计划的特定任务的声音描述。最后,我们展示了如何自主构建由越来越抽象的表示的多级层次结构。由于这些层次结构是可转移的,因此可以在新任务中重复使用高阶概念,从而使代理无法重新学习并提高样本效率。我们的结果表明,我们的方法使代理可以将以前的知识转移到新任务,从而提高样本效率,随着任务数量的增加。

We are concerned with the question of how an agent can acquire its own representations from sensory data. We restrict our focus to learning representations for long-term planning, a class of problems that state-of-the-art learning methods are unable to solve. We propose a framework for autonomously learning state abstractions of an agent's environment, given a set of skills. Importantly, these abstractions are task-independent, and so can be reused to solve new tasks. We demonstrate how an agent can use an existing set of options to acquire representations from ego- and object-centric observations. These abstractions can immediately be reused by the same agent in new environments. We show how to combine these portable representations with problem-specific ones to generate a sound description of a specific task that can be used for abstract planning. Finally, we show how to autonomously construct a multi-level hierarchy consisting of increasingly abstract representations. Since these hierarchies are transferable, higher-order concepts can be reused in new tasks, relieving the agent from relearning them and improving sample efficiency. Our results demonstrate that our approach allows an agent to transfer previous knowledge to new tasks, improving sample efficiency as the number of tasks increases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源