论文标题
几何堆栈上的货车图
The van Est Map on Geometric Stacks
论文作者
论文摘要
我们以三种方式概括了范例图和同构定理,我们讨论了与同型理论的猜想,包括一个类别的建议,该类别统一了可区分的堆栈,lie代数和同型理论。在本论文的第2部分中,我们从lie groupoid coomology和lie代数共同体之间的比较图中概括了范表映射,到一个(更概念性的)比较图之间的堆栈$ \ Mathcal {G g} $的共同体之间的比较图与简单叶子$ \ nathcal $ \ Mathcal {h} h} h} \ to Mathscal {g \ to Mathscal {在第1部分中,我们概括了可以在van est映射的上下文中采用的函数。我们可以使用在表示模块中的函数,例如。我们可以使用$ s^1 $值函数和$ \ mathbb {z} $ - 有价值的函数。最后,我们所做的一切都可以在平滑和全体形态类别中工作。这些概括使我们能够得出无法使用通常的范表映射获得的经典结果,并提供了一种新的计算共同体方法。本论文的第3部分涉及对Lie代数和LA组类别类别中Morita等价的定义的建议。我们发现,我们提出的LA组类别类别统一了可区分的堆栈,代数和同型理论。特别是,谎言代数和lie类之间存在形态,我们表明这种对象可以是莫里塔等同的。这给出了对货车映射的另一种解释。使用此类别,我们认为$ g $的分类空间只是一个同等的空间。我们讨论了更高的概括性形态(由Gerbes给出),并猜想了Grothendieck同质性假设的平滑版本的存在。
We generalize the van Est map and isomorphism theorem in three ways, and we discuss conjectured connections with homotopy theory, including a proposal of a category which unifies differentiable stacks, Lie algebroids and homotopy theory. In Part 2 of this thesis we generalize the van Est map from a comparison map between Lie groupoid cohomology and Lie algebroid cohomology to a (more conceptual) comparison map between the cohomology of a stack $\mathcal{G}$ and the cohomology of a simple foliation $\mathcal{H}\to\mathcal{G}$. In Part 1 we generalize the functions that we can take cohomology of in the context of the van Est map. Instead of using functions valued in representations, we can use functions valued in modules, eg. we can use $S^1$-valued functions and $\mathbb{Z}$-valued functions. Finally, everything we do works in both the smooth and holomorphic categories. These generalizations allow us to derive results, including classical ones, that could not be obtained with the usual van Est map, and they give a new method of computing cohomology. Part 3 of this thesis involves a proposal of a definition of Morita equivalences in the categories of Lie algebroids and LA-groupoids. What we find is that our proposed category of LA-groupoids unifies differentiable stacks, Lie algebroids and homotopy theory. In particular, there are morphisms between Lie algebroids and Lie groupoids and we show that such objects can be Morita equivalent. This gives another interpretation of the van Est map. Using this category, we argue that a classifying space for $G$ is just a space which is homotopy equivalent it. We discuss higher generalized morphisms (given by gerbes) and we conjecture the existence of a smooth version of Grothendieck's homotopy hypothesis.