论文标题
将微观放入宏:在强制脱水过程中应用于流动不稳定的动态润湿的分子流体动力模型
Putting the micro into the macro: A molecularly-augmented hydrodynamic model of dynamic wetting applied to flow instabilities during forced dewetting
论文作者
论文摘要
我们报告了一个基于分子的连续性润湿计算模型,并将其应用于两个部分润湿的平行板之间外部驱动的液体塞的位移。结果紧密遵循在最近的分子动力学(MD)研究中获得的相同问题(2021)的结果,我们将其用作基准。我们能够将脱水$ u^*_ {\ mathrm {crit}} $解释为稳定相图中的折叠分叉的最大速度,并表明其依赖于真实的触点$θ_{\ mathrm {cl}} $的依赖性与使用MD的数量相似。该模型的一个关键特征是接触角取决于接触线的速度,$θ_ {\ mathrm {cl}} $作为解决方案的一部分出现。该模型使我们能够以脱水速度研究薄膜的形成$ u^*> u^*_ {\ mathrm {crit}} $在一系列长度尺度上,包括那些对MD模拟的计算效果的尺度。我们表明,薄膜的厚度与通道宽度线性缩放,仅依赖于毛细管数。这项工作提供了匹配的渐近技术(对较大几何)和MD模拟(对较小的几何形状有效)之间的联系。此外,我们发现折叠分叉处的表观角度,实验可见的接触角并不为零。这与基于接触线附近流动润滑模型的常规处理预测相反,但与实验一致。
We report a molecularly-augmented continuum-based computational model of dynamic wetting and apply it to the displacement of an externally-driven liquid plug between two partially-wetted parallel plates. The results closely follow those obtained in a recent molecular-dynamics (MD) study of the same problem Toledano (2021) which we use as a benchmark. We are able to interpret the maximum speed of dewetting $U^*_{\mathrm{crit}}$ as a fold bifurcation in the steady phase diagram and show that its dependence on the true contact angle $θ_{\mathrm{cl}}$ is quantitatively similar to that found using MD. A key feature of the model is that the contact angle is dependent on the speed of the contact line, with $θ_{\mathrm{cl}}$ emerging as part of the solution. The model enables us to study the formation of a thin film at dewetting speeds $U^*>U^*_{\mathrm{crit}}$ across a range of length scales, including those that are computationally prohibitive to MD simulations. We show that the thickness of the film scales linearly with the channel width and is only weakly dependent on the capillary number. This work provides a link between matched asymptotic techniques (valid for larger geometries) and MD simulations (valid for smaller geometries). In addition, we find that the apparent angle, the experimentally visible contact angle at the fold bifurcation, is not zero. This is in contrast to the prediction of conventional treatments based on the lubrication model of flow near the contact line, but consistent with experiment.