论文标题

用线积分减少标志问题

Reducing the Sign Problem with Line Integrals

论文作者

Larsen, Rasmus N.

论文摘要

我们提出了一种新的策略,以强烈使用符号问题的严重程度,并使用沿改变虚构动作的路径进行线积分。这些路径上的高度振荡区域取消,减少了它们的贡献。结果,在否则需要利用复杂分析的方法(例如lefschetz-thimbles或复杂的langevin)的情况下,使用标准蒙特卡洛技术进行采样。我们列出了如何写下对线积分的普通微分方程。作为其使用情况的一个例子,我们将结果应用于具有$ x^4 $实时的有限温度的一维量子机械振荡器。

We present a novel strategy to strongly reduce the severity of the sign problem, using line integrals along paths of changing imaginary action. Highly oscillating regions along these paths cancel out, decreasing their contributions. As a result, sampling with standard Monte-Carlo techniques becomes possible in cases that otherwise require methods taking advantage of complex analysis, such as Lefschetz-thimbles or Complex Langevin. We lay out how to write down an ordinary differential equation for the line integrals. As an example of its usage, we apply the results to a 1d quantum mechanical anharmonic oscillator with a $x^4$ potential in real time, finite temperature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源