论文标题
特殊点作为动态磁相变类的特征
Exceptional points as signatures of dynamical magnetic phase transitions
论文作者
论文摘要
非富裕系统最令人着迷,最令人困惑的方面之一是它们的光谱退化性,即特殊点(EPS),在该频谱中,特征值和特征向量均融合在一起以形成有缺陷的状态空间。虽然耦合磁系统是EPS的天然宿主,但EPS接近的线性和非线性自旋动力学之间的关系仍然相对尚未探索。在这里,我们从理论上研究了在特殊点附近的易于平面磁性双层的自旋动力学。我们表明,本质上耗散的自旋动力学和外部驱动器之间的相互作用可以产生丰富的动力学相图。特别是,我们发现,在抗磁性耦合双层中,周期性的振荡动力相在由EPS包围的区域中出现。我们的结果不仅提供了具有较大振幅振荡的磁性EPS和工程磁性纳米振荡器的途径,而且还发现了显示非线性性的系统中的特殊点和动态相变之间的关系。
One of the most fascinating and puzzling aspects of non-Hermitian systems is their spectral degeneracies, i.e., exceptional points (EPs), at which both eigenvalues and eigenvectors coalesce to form a defective state space. While coupled magnetic systems are natural hosts of EPs, the relation between the linear and nonlinear spin dynamics in the proximity of EPs remains relatively unexplored. Here we theoretically investigate the spin dynamics of easy-plane magnetic bilayers in the proximity of exceptional points. We show that the interplay between the intrinsically dissipative spin dynamics and external drives can yield a rich dynamical phase diagram. In particular, we find that, in antiferromagnetically coupled bilayers, a periodic oscillating dynamical phase emerges in the region enclosed by EPs. Our results not only offer a pathway for probing magnetic EPs and engineering magnetic nano-oscillators with large-amplitude oscillations, but also uncover the relation between exceptional points and dynamical phase transitions in systems displaying non-linearities.