论文标题
关于使用线性编程的无关机器的先发制度安排
On Preemptive Scheduling of Unrelated Machines Using Linear Programming
论文作者
论文摘要
我们考虑了$ n $非相似的$ n $不相似的$ n $的基本问题。在计划文献中,通常认为通过线性编程(LP)技术在Lawler和Labetoulle \ cite \ cite {ll78}中提出的线性编程技术可以解决问题。 \ cite {ll78}中的作者给出了具有同时发布作业的版本的LP公式,并显示该LP的最佳解决方案如何用于构建后者问题的最佳时间表。正如当前的研究所示,对于非同步释放的作业,不太可能存在线性程序,因此可以根据最佳LP解决方案构建具有最低量的时间表。我们还证明,如果不允许在机器上分裂相同的作业(即,分配给机器的作业部分必须在不中断的情况下处理到机器上),则问题是NP-HARD。作为一个综上的结果,我们得到,只要不允许作业分割,给定最佳的LP解决方案,找到与该LP解决方案一致的最小制造PAN的最佳时间表是NP-HARD。我们还基于Lawler和Labetoulle \ Cite {ll78}的最佳LP解决方案扩展了时间表构建程序,用于非同时发布的作业。在与任何可行的(不一定是最佳)LP解决方案一致的所有可行时间表中,扩展过程都会以最小的makepan生成一个。此类过程特别有用,特别是因为,正如我们所表明的那样,如果作业不相同,则可能没有最佳的时间表与最佳的LP解决方案一致。
We consider a basic problem of preemptive scheduling of $n$ non-simultaneously released jobs on a group of $m$ unrelated parallel machines so as to minimize maximum job completion time, the makespan. In the scheduling literature, the problem is commonly considered to be solvable in polynomial time by linear programming (LP) techniques proposed in Lawler and Labetoulle \cite{ll78}. The authors in \cite{ll78} give a LP formulation of the version with simultaneously released jobs and show how an optimal solution to this LP can be used to construct an optimal schedule to the latter problem. As the current study shows, for non-simultaneously released jobs, unlikely, there exist a linear program such that a schedule with the minimum makespan can be constructed based on an optimal LP solution. We also prove that, in case no splitting of the same job on a machine is allowed (i.e., job part assigned to a machine is to be processed without an interruption on that machine), the problem is NP-hard. As a side result, we obtain that, whenever job splitting is not allowed, given an optimal LP solution, it is NP-hard to find an optimal schedule with the minimum makespan that agrees with that LP solution. We also extend the schedule construction procedure based on an optimal LP solution from Lawler and Labetoulle \cite{ll78} for non-simultaneously released jobs. The extended procedure, among all feasible schedules that agree with any feasible (not necessarily optimal) LP solution, generates one with the minimum makespan. Such procedure is helpful, in particular, because, as we show, there may exist no optimal schedule that agrees with an optimal LP solution if jobs are non-simultaneously released.