论文标题

拓扑字符串和威尔逊循环

Topological strings and Wilson loops

论文作者

Huang, Min-xin, Lee, Kimyeong, Wang, Xin

论文摘要

我们提出了与5D $ \ MATHCAL {n} = 1 $量学理论分区函数在Omega-emformed的背景$ \ MATHBB {r}^4_ {ε_{ε_{1,2}} \ times times s^1 $ s上的精制拓扑字符串对应于5D $ \ MATHCAL {n} = 1 $ garuge理论分区函数在5D $ \ MATHCAL {n} = 1 $量学理论分区函数的期望值的对应。我们在拓扑弦理论中提供了精致的拓扑顶点方法和精致的全体形态异常方程方法,我们在A-和B模型中对5D Wilson Loops分区函数进行了精确的计算。最后,在B型中,我们恢复了本地$ \ mathbb {p}^1 \ times \ Mathbb {p}^1 $模型和局部$ \ mathbb {p}^2 $模型在量子几何学研究中,我们进一步给出了A-Period的精制概括。

We propose the refined topological string correspondence to the expectation values of half-BPS Wilson loop operators in 5d $\mathcal{N}=1$ gauge theory partition function on the Omega-deformed background $\mathbb{R}^4_{ε_{1,2}}\times S^1$. We provide the refined topological vertex method and the refined holomorphic anomaly equation method in the topological string theory, from which we have exact computations on the 5d Wilson loops partition functions in both A- and B-models. Finally, with the exact results we have in B-model, we recover the quantum periods of local $\mathbb{P}^1\times\mathbb{P}^1$ model and local $\mathbb{P}^2$ model in the study of quantum geometry and we further give a refined generalization of A-period.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源