论文标题

使用深图像和生成先验的抗压ptychography

Compressive Ptychography using Deep Image and Generative Priors

论文作者

Barutcu, Semih, Gürsoy, Doğa, Katsaggelos, Aggelos K.

论文摘要

PtyChography是一种完善的相干衍射成像技术,可以在纳米尺度上对样品进行非侵入性成像。它已在国防工业或材料科学等各个领域广泛使用。 ptychography的一个主要局限性是由于样品的机械扫描而导致的较长数据采集时间。因此,高度需要减少扫描点的方法。但是,扫描点数量较少的重建导致成像伪影和显着扭曲,从而阻碍了对结果的定量评估。为了解决这一瓶颈,我们提出了一个结合深层图像先验和深层生成先验的生成模型。自训练方法优化了深层生成神经网络,以为给定数据集创建解决方案。我们通过从先前训练的歧视者网络中获得的事先获得的方法来补充我们的方法,以避免与测量中噪声引起的所需输出的差异。我们还建议在由于测量噪声引起的战斗之前使用总变异作为互补。我们通过不同的探针重叠百分比和变化的噪声水平通过数值实验分析我们的方法。与最先进的方法相比,我们还证明了重建精度的提高,并讨论了我们方法的优势和缺点。

Ptychography is a well-established coherent diffraction imaging technique that enables non-invasive imaging of samples at a nanometer scale. It has been extensively used in various areas such as the defense industry or materials science. One major limitation of ptychography is the long data acquisition time due to mechanical scanning of the sample; therefore, approaches to reduce the scan points are highly desired. However, reconstructions with less number of scan points lead to imaging artifacts and significant distortions, hindering a quantitative evaluation of the results. To address this bottleneck, we propose a generative model combining deep image priors with deep generative priors. The self-training approach optimizes the deep generative neural network to create a solution for a given dataset. We complement our approach with a prior acquired from a previously trained discriminator network to avoid a possible divergence from the desired output caused by the noise in the measurements. We also suggest using the total variation as a complementary before combat artifacts due to measurement noise. We analyze our approach with numerical experiments through different probe overlap percentages and varying noise levels. We also demonstrate improved reconstruction accuracy compared to the state-of-the-art method and discuss the advantages and disadvantages of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源