论文标题

混合模型贝叶斯推断的顺序重要性抽样,以支持生物普应机制学习和稳健控制

Sequential Importance Sampling for Hybrid Model Bayesian Inference to Support Bioprocess Mechanism Learning and Robust Control

论文作者

Xie, Wei, Wang, Keqi, Zheng, Hua, Feng, Ben

论文摘要

在生物制造4.0的关键需求的驱动下,我们引入了一种概率知识图杂交模型,该模型表征了对生物过程机制的风险和科学理解。它可以忠实地捕获重要特性,包括非线性反应,部分观察到的状态和非平稳动态。考虑到非常有限的实际过程观测值,我们得出了后验分布量化模型估计不确定性。为了避免评估顽固的似然,使用顺序蒙特卡洛(ABC-SMC)的近似贝叶斯计算采样可用于近似后验分布。在高随机和模型不确定性下,匹配输出轨迹在计算上昂贵。因此,我们创建了一个线性高斯动态贝叶斯网络(LG-DBN)基于辅助可能性的ABC-SMC方法。通过与可以捕获关键相互作用和变化的LG-DBN可能性驱动的汇总统计数据,所提出的算法可以加速混合模型推断,支持过程监测并促进机制学习和稳健的控制。

Driven by the critical needs of biomanufacturing 4.0, we introduce a probabilistic knowledge graph hybrid model characterizing the risk- and science-based understanding of bioprocess mechanisms. It can faithfully capture the important properties, including nonlinear reactions, partially observed state, and nonstationary dynamics. Given very limited real process observations, we derive a posterior distribution quantifying model estimation uncertainty. To avoid the evaluation of intractable likelihoods, Approximate Bayesian Computation sampling with Sequential Monte Carlo (ABC-SMC) is utilized to approximate the posterior distribution. Under high stochastic and model uncertainties, it is computationally expensive to match output trajectories. Therefore, we create a linear Gaussian dynamic Bayesian network (LG-DBN) auxiliary likelihood-based ABC-SMC approach. Through matching the summary statistics driven through LG-DBN likelihood that can capture critical interactions and variations, the proposed algorithm can accelerate hybrid model inference, support process monitoring, and facilitate mechanism learning and robust control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源