论文标题
DeepExtrema:一种预测时间序列数据的深度学习方法
DeepExtrema: A Deep Learning Approach for Forecasting Block Maxima in Time Series Data
论文作者
论文摘要
由于极端事件对人类和自然系统的重大影响,对时间序列中极值的准确预测至关重要。本文提出了DeepExtrema,这是一个新型框架,将深神网络(DNN)与广义极值(GEV)分布相结合,以预测时间序列的最大值。实施这种网络是一个挑战,因为框架必须在GEV模型参数之间保留相互依赖的约束,即使DNN被初始化。我们描述了解决这一挑战的方法,并提出了一个实现块最大值的条件平均值和分位数预测的体系结构。对现实世界和合成数据进行的广泛实验表明,与其他基线方法相比,深链球菌的优越性。
Accurate forecasting of extreme values in time series is critical due to the significant impact of extreme events on human and natural systems. This paper presents DeepExtrema, a novel framework that combines a deep neural network (DNN) with generalized extreme value (GEV) distribution to forecast the block maximum value of a time series. Implementing such a network is a challenge as the framework must preserve the inter-dependent constraints among the GEV model parameters even when the DNN is initialized. We describe our approach to address this challenge and present an architecture that enables both conditional mean and quantile prediction of the block maxima. The extensive experiments performed on both real-world and synthetic data demonstrated the superiority of DeepExtrema compared to other baseline methods.