论文标题

通过批评编辑辅助食谱

Assistive Recipe Editing through Critiquing

论文作者

Antognini, Diego, Li, Shuyang, Faltings, Boi, McAuley, Julian

论文摘要

最近,人们对满足某些形式的饮食限制的自动生成烹饪食谱的兴趣越来越大,部分原因是在线食谱数据的可用性。先前的研究使用了预训练的语言模型,或依靠小配方数据(例如,配方与满足饮食约束的类似食谱)。但是,预训练的语言模型会产生不一致或不一致的配方,并且配对数据集的大规模可用。我们用Copeecrit解决这些缺陷,这是一种层次的denoising自动编码器,它编辑了给定成分级别的批评的配方。该模型经过培训,以完成食谱完成,以学习食谱中的语义关系。我们工作的主要创新是我们无监督的批判模块,该模块允许用户通过与预测的成分进行交互来编辑食谱;该系统迭代重写食谱以满足用户的反馈。配方1M食谱数据集上的实验表明,与强大的语言建模基准相比,我们的模型可以更有效地编辑食谱,创建满足用户约束的食谱,并且更正确,更正确,偶然,连贯,相关且相关,并由人类法官衡量。

There has recently been growing interest in the automatic generation of cooking recipes that satisfy some form of dietary restrictions, thanks in part to the availability of online recipe data. Prior studies have used pre-trained language models, or relied on small paired recipe data (e.g., a recipe paired with a similar one that satisfies a dietary constraint). However, pre-trained language models generate inconsistent or incoherent recipes, and paired datasets are not available at scale. We address these deficiencies with RecipeCrit, a hierarchical denoising auto-encoder that edits recipes given ingredient-level critiques. The model is trained for recipe completion to learn semantic relationships within recipes. Our work's main innovation is our unsupervised critiquing module that allows users to edit recipes by interacting with the predicted ingredients; the system iteratively rewrites recipes to satisfy users' feedback. Experiments on the Recipe1M recipe dataset show that our model can more effectively edit recipes compared to strong language-modeling baselines, creating recipes that satisfy user constraints and are more correct, serendipitous, coherent, and relevant as measured by human judges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源