论文标题
参数生成方案具有用于编码和合成翼型的几何约束
Parametric Generative Schemes with Geometric Constraints for Encoding and Synthesizing Airfoils
论文作者
论文摘要
现代空气动力学优化对具有高水平的直觉,灵活性和代表性准确性的参数方法的需求很强,这是无法通过传统的翼型参数技术完全实现的。在本文中,提出了两种基于学习的生成方案,以有效地捕获设计空间的复杂性,同时满足特定的约束。 1。软约束方案:基于条件变异自动编码器(CVAE)的模型,以直接作为网络的一部分训练几何约束。 2。硬约束方案:基于VAE的模型,用于生成不同的机翼和一种基于FFD的技术,以将生成的机翼投射到给定的约束上。根据统计结果,重建的机翼既准确又光滑,而无需其他过滤器。软约束的方案生成的机翼与预期的几何约束表现出轻微的偏差,但仍会在几何空间和客观空间中以一定程度的分布偏置收敛到参考机翼。相比之下,硬受控的方案产生具有更大范围的几何多样性的机翼,同时严格遵守几何约束。客观空间中的相应分布也更加多样化,参考点周围的各向同性均匀性和没有显着偏见。这些提出的翼型参数方法可以突破目标空间中训练数据的边界,从而为随机采样和提高优化设计的效率提供了更高质量的样本。
The modern aerodynamic optimization has a strong demand for parametric methods with high levels of intuitiveness, flexibility, and representative accuracy, which cannot be fully achieved through traditional airfoil parametric techniques. In this paper, two deep learning-based generative schemes are proposed to effectively capture the complexity of the design space while satisfying specific constraints. 1. Soft-constrained scheme: a Conditional Variational Autoencoder (CVAE)-based model to train geometric constraints as part of the network directly. 2. Hard-constrained scheme: a VAE-based model to generate diverse airfoils and an FFD-based technique to project the generated airfoils onto the given constraints. According to the statistical results, the reconstructed airfoils are both accurate and smooth, without any need for additional filters. The soft-constrained scheme generates airfoils that exhibit slight deviations from the expected geometric constraints, yet still converge to the reference airfoil in both geometry space and objective space with some degree of distribution bias. In contrast, the hard-constrained scheme produces airfoils with a wider range of geometric diversity while strictly adhering to the geometric constraints. The corresponding distribution in the objective space is also more diverse, with isotropic uniformity around the reference point and no significant bias. These proposed airfoil parametric methods can break through the boundaries of training data in the objective space, providing higher quality samples for random sampling and improving the efficiency of optimization design.