论文标题
BOTT-CHERN的共同学和Hartogs扩展定理用于Pluriharmonic函数
Bott-Chern cohomology and the Hartogs extension theorem for pluriharmonic functions
论文作者
论文摘要
令$ x $为同一个$(n-1)$ - dimension $ n \ geq 2 $的完整复杂流形。我们证明,对于$ x $中的$ x $ $(1,1)$类型(1,1)$的Bott-Chern共同体组的结果消失了,这与Ehrenpreis的众所周知的技术相结合,暗示了Hartogs类型的扩展定理,用于$ X $。
Let $X$ be a cohomologically $(n-1)$-complete complex manifold of dimension $n\geq 2$. We prove a vanishing result for the Bott-Chern cohomology group of type $(1, 1)$ with compact support in $X$, which combined with the well-known technique of Ehrenpreis implies a Hartogs type extension theorem for pluriharmonic functions on $X$.