论文标题

NIR和可见域中的内部和横光虹膜表现攻击检测

Intra and Cross-spectrum Iris Presentation Attack Detection in the NIR and Visible Domains

论文作者

Fang, Meiling, Boutros, Fadi, Damer, Naser

论文摘要

虹膜表现攻击检测(PAD)对于保护虹膜识别系统至关重要。最近的Iris Pad解决方案通过利用深度学习技术实现了良好的性能。但是,大多数结果是在数据库内的情况下报告的,目前尚不清楚这种解决方案是否可以跨数据库概括并捕获光谱。由于网络培训期间的二进制标签监督,这些PAD方法具有过度拟合的风险,该二进制标签的监督服务于全球信息学习,但削弱了捕获本地歧视性特征的捕获。本章介绍了一种基于注意力的深层像素二进制监督(A-PBS)方法。 A-PBS利用像素的监督来捕获细粒的像素/补丁级提示和注意机制来指导网络自动找到大多数有助于准确的PAD决策的区域。在六个NIR和一个可见光的虹膜数据库上进行了广泛的实验,以显示拟议的A-PBS方法的有效性和鲁棒性。我们还在内部/跨数据库和跨光谱中进行了广泛的实验,以详细分析。我们的实验结果表明A-PBS IRIS PAD方法的普遍性。

Iris Presentation Attack Detection (PAD) is essential to secure iris recognition systems. Recent iris PAD solutions achieved good performance by leveraging deep learning techniques. However, most results were reported under intra-database scenarios and it is unclear if such solutions can generalize well across databases and capture spectra. These PAD methods run the risk of overfitting because of the binary label supervision during the network training, which serves global information learning but weakens the capture of local discriminative features. This chapter presents a novel attention-based deep pixel-wise binary supervision (A-PBS) method. A-PBS utilizes pixel-wise supervision to capture the fine-grained pixel/patch-level cues and attention mechanism to guide the network to automatically find regions where most contribute to an accurate PAD decision. Extensive experiments are performed on six NIR and one visible-light iris databases to show the effectiveness and robustness of proposed A-PBS methods. We additionally conduct extensive experiments under intra-/cross-database and intra-/cross-spectrum for detailed analysis. The results of our experiments indicates the generalizability of the A-PBS iris PAD approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源