论文标题
Amoebot模型中可重构电路的结构性
The Structural Power of Reconfigurable Circuits in the Amoebot Model
论文作者
论文摘要
已提出了Amoebot模型[Derakhshandeh等,2014],作为可编程物质的模型,该模型由小型机器人元素组成,称为Amoebot。我们考虑了可重新配置的电路扩展[Feldmann等,JCB 2022]的几何(变体)Amoebot模型,该模型允许Amoebot结构通过所谓的电路相互连接的Amoebot。电路允许瞬时传输连接的变形虫之间的信号。在本文中,我们研究了可重构电路的结构力。 我们从一些基本问题开始,例如条纹计算问题,在鉴于任何连接的Amoebot结构$ s $,$ s $中的Amoebot $ u $和某些Axis $ x $,以及所有属于Axis $ x $ x $ x $ x $ u $的Axis $ x $的Amoebot $ u $。其次,我们考虑了全局最大问题,该问题在某些给定的Amoebot(Sub)结构中识别出最高位置的Amoebot。然后可以使用解决这个问题的解决方案来解决骨骼问题,其中必须在包含所有边界变形虫的给定的Amoebot结构中找到(不一定简单的)Amoebots。然后可以使用规范的解决方案来提出一条规范的路径,该路径提供了给定的Amoebot结构的形状的独特表征。然后,为不同方向构建规范路径将允许Amoebot设置一个生成树并检查给定的Amoebot结构的对称性。 这些问题对于许多应用程序很重要,例如快速形状转化,能量传播和结构监测。有趣的是,可重新配置的电路扩展可以使所有这些问题都可以解决各种问题。
The amoebot model [Derakhshandeh et al., 2014] has been proposed as a model for programmable matter consisting of tiny, robotic elements called amoebots. We consider the reconfigurable circuit extension [Feldmann et al., JCB 2022] of the geometric (variant of the) amoebot model that allows the amoebot structure to interconnect amoebots by so-called circuits. A circuit permits the instantaneous transmission of signals between the connected amoebots. In this paper, we examine the structural power of the reconfigurable circuits. We start with some fundamental problems like the stripe computation problem where, given any connected amoebot structure $S$, an amoebot $u$ in $S$, and some axis $X$, all amoebots belonging to axis $X$ through $u$ have to be identified. Second, we consider the global maximum problem, which identifies an amoebot at the highest possible position with respect to some direction in some given amoebot (sub)structure. A solution to this problem can then be used to solve the skeleton problem, where a (not necessarily simple) cycle of amoebots has to be found in the given amoebot structure which contains all boundary amoebots. A canonical solution to that problem can then be used to come up with a canonical path, which provides a unique characterization of the shape of the given amoebot structure. Constructing canonical paths for different directions will then allow the amoebots to set up a spanning tree and to check symmetry properties of the given amoebot structure. The problems are important for a number of applications like rapid shape transformation, energy dissemination, and structural monitoring. Interestingly, the reconfigurable circuit extension allows polylogarithmic-time solutions to all of these problems.