论文标题

关于某些广义旋塞图的色数

On the Chromatic Number of some generalized Kneser Graphs

论文作者

D'haeseleer, Jozefien, Metsch, Klaus, Werner, Daniel

论文摘要

我们确定了对大q的有限场gf(q)上的矢量类型{3,4}标志的标志的Kneser GraphQγ_{7,{3,4}}的色数。这个结果不仅依赖于独立数,而且还取决于所有大型独立集的结构。此外,从以下意义上讲,我们的证明是更笼统的:它提供了qγ_{2d+1,{d,d,d+1}}的qγ_{2d+1,{d,d+1}}的矢量类型标志{d,d,d,d+1}的等级2d+1+1个矢量空间的gf(q)的大型q仅是大型q的大型Q,仅在gf(q)上很长,只有大型独立组的图形。

We determine the chromatic number of the Kneser graph qΓ_{7,{3,4}} of flags of vectorial type {3, 4} of a rank 7 vector space over the finite field GF(q) for large q and describe the colorings that attain the bound. This result relies heavily, not only on the independence number, but also on the structure of all large independent sets. Furthermore, our proof is more general in the following sense: it provides the chromatic number of the Kneser graphs qΓ_{2d+1,{d,d+1}} of flags of vectorial type {d, d+1} of a rank 2d+1 vector space over GF(q) for large q as long as the large independent sets of the graphs are only the ones that are known.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源