论文标题

在反馈耦合振荡器中测量绝热的非热浆液期

Measuring the Adiabatic Non-Hermitian Berry Phase in Feedback-Coupled Oscillators

论文作者

Singhal, Yaashnaa, Martello, Enrico, Agrawal, Shraddha, Ozawa, Tomoki, Price, Hannah, Gadway, Bryce

论文摘要

几何浆果阶段是了解在环状绝热进化下量子状态的行为的关键。当概括到具有增益和损失的非热系统时,浆果阶段可能会变得复杂,并且不仅应修改状态的幅度,而且还应修改状态的幅度。在这里,我们对绝热的非热浆果阶段进行了第一个实验测量,探索了最小的两点$ \ Mathcal {pt} $ - 受Hatano-Nelson模型启发的对称的Hamiltonian。我们通过将其动力学映射到通过基于实时测量的反馈结合的一对经典振荡器的动力学来实验中实现了这种非热模型。当我们通过实验验证时,绝热的非热浆液相是一种纯粹的几何效应,即使所有特征力是真实的,也会在参数空间内进行非周期性路径的幅度显着扩增和阻尼。我们进一步观察了Aharonov-Bohm螺线管效应的非热类似物,当包围破碎的$ \ Mathcal {pt} $对称性区域时,可以观察到放大和衰减,该区域用作虚拟的来源。该实验证明了非甲米系统独有的几何效应的重要性,并为在合成超材料中对非铁和拓扑物理学的进一步研究铺平了道路。

The geometrical Berry phase is key to understanding the behaviour of quantum states under cyclic adiabatic evolution. When generalised to non-Hermitian systems with gain and loss, the Berry phase can become complex, and should modify not only the phase but also the amplitude of the state. Here, we perform the first experimental measurements of the adiabatic non-Hermitian Berry phase, exploring a minimal two-site $\mathcal{PT}$-symmetric Hamiltonian that is inspired by the Hatano-Nelson model. We realise this non-Hermitian model experimentally by mapping its dynamics to that of a pair of classical oscillators coupled by real-time measurement-based feedback. As we verify experimentally, the adiabatic non-Hermitian Berry phase is a purely geometrical effect that leads to significant amplification and damping of the amplitude also for non-cyclical paths within the parameter space even when all eigenenergies are real. We further observe a non-Hermitian analog of the Aharonov--Bohm solenoid effect, observing amplification and attenuation when encircling a region of broken $\mathcal{PT}$ symmetry that serves as a source of imaginary flux. This experiment demonstrates the importance of geometrical effects that are unique to non-Hermitian systems and paves the way towards the further studies of non-Hermitian and topological physics in synthetic metamaterials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源