论文标题
Koopman为时间一致的人类步行估计提出了预测
Koopman pose predictions for temporally consistent human walking estimations
论文作者
论文摘要
我们使用组合惯性测量单元(IMU)数据,RGB图像和点云深度测量的多模式系统,解决了追踪人类下半身作为迈向自动运动评估系统的第一步的问题。该系统将因子图表示应用于提供3-D骨架关节估计的优化问题。在本文中,我们专注于提高估计的人类轨迹的时间一致性,以极大地扩展深度传感器的可操作性范围。更具体地说,我们基于Koopman理论引入了一个新的因子图因子,该因素嵌入了几种下LIMB运动活动的非线性动力学。该因素执行了两个步骤的过程:首先,基于空间时间图卷积网络的自定义活动识别模块识别步行活动;然后,将Koopman的姿势预测随后的骨骼作为先验估计,以将优化问题推向更一致的结果。我们测试了该模块在由多个临床下限迁移率测试组成的数据集上的性能,我们表明我们的方法将骨骼形式的异常值降低了近1 m,而在深度下,将天然步行轨迹保持在10 m以上。
We tackle the problem of tracking the human lower body as an initial step toward an automatic motion assessment system for clinical mobility evaluation, using a multimodal system that combines Inertial Measurement Unit (IMU) data, RGB images, and point cloud depth measurements. This system applies the factor graph representation to an optimization problem that provides 3-D skeleton joint estimations. In this paper, we focus on improving the temporal consistency of the estimated human trajectories to greatly extend the range of operability of the depth sensor. More specifically, we introduce a new factor graph factor based on Koopman theory that embeds the nonlinear dynamics of several lower-limb movement activities. This factor performs a two-step process: first, a custom activity recognition module based on spatial temporal graph convolutional networks recognizes the walking activity; then, a Koopman pose prediction of the subsequent skeleton is used as an a priori estimation to drive the optimization problem toward more consistent results. We tested the performance of this module on datasets composed of multiple clinical lowerlimb mobility tests, and we show that our approach reduces outliers on the skeleton form by almost 1 m, while preserving natural walking trajectories at depths up to more than 10 m.