论文标题
希尔伯特空间上的p-operators
P-Operators on Hilbert Spaces
论文作者
论文摘要
如果其所有主要未成年人均为正面,则真正的Square Matrix $ a $称为P-Matrix。使用矩阵的符号非反转特性,Kannan和Sivakumar最近将P-Matrix的概念扩展到了相对于给定的Schauder基础的无限二维Banach空间。在他们的工作中,我们讨论了可分离的真实希尔伯特空间的p-erserators。我们还研究了相对于各种正顺式碱基的P仪。
A real square matrix $A$ is called a P-matrix if all its principal minors are positive. Using the sign non-reversal property of matrices, the notion of P-matrix has been recently extended by Kannan and Sivakumar to infinite-dimensional Banach spaces relative to a given Schauder basis. Motivated by their work, we discuss P-operators on separable real Hilbert spaces. We also investigate P-operators relative to various orthonormal bases.