论文标题

$ \ MATHCAL {O}(g^{2} s^{\ infty})$的经典引力旋转无旋转散射

Classical gravitational spinning-spinless scattering at $\mathcal{O}(G^{2} S^{\infty})$

论文作者

Aoude, Rafael, Haddad, Kays, Helset, Andreas

论文摘要

利用最近衍生的全旋转,相反螺旋的康普顿振幅,我们计算了一个旋转的经典重力散射振幅,一个旋转的对象和一个无自旋的对象,$ \ MATHCAL {o}(g^{2})$,以及所有旋转中的所有订单。通过构造,这种振幅表现出已猜想来描述Kerr黑洞的自旋结构。仅此自旋结构不足以通过接触项来固定康普顿振幅的所有变形,但是当与超偏移限制的考虑相结合时,我们可以唯一地将值分配给偶数固定扇区中的参数。一旦确定了这些参数,振幅简历的大部分自旋依赖性都将其转化为超小几幅函数。最后,我们得出了对齐自旋散射的艾科纳尔相。

Making use of the recently-derived, all-spin, opposite-helicity Compton amplitude, we calculate the classical gravitational scattering amplitude for one spinning and one spinless object at $\mathcal{O}(G^{2})$ and all orders in spin. By construction, this amplitude exhibits the spin structure that has been conjectured to describe Kerr black holes. This spin structure alone is not enough to fix all deformations of the Compton amplitude by contact terms, but when combined with considerations of the ultrarelativistic limit we can uniquely assign values to the parameters remaining in the even-in-spin sector. Once these parameters are determined, much of the spin dependence of the amplitude resums into hypergeometric functions. Finally, we derive the eikonal phase for aligned-spin scattering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源