论文标题

校准的气体积聚和轨道迁移在1D盘模型中

Calibrated Gas Accretion and Orbital Migration of Protoplanets in 1D Disc Models

论文作者

Schib, Oliver, Mordasini, Christoph, Helled, Ravit

论文摘要

我们旨在在1D磁盘模型中开发一个简单的处方,以使用3D流体动力模拟的结果进行校准。我们的重点在于非自我的光盘,但是我们还讨论了在椎间盘自我磨碎时可以在什么程度上应用我们的处方的程度。 我们使用扭矩密度研究迁移。我们的扭矩密度模型基于现有的拟合公式,我们随后对其进行修改,以防止过早开放。在较高的行星质量下,我们还将流体动力模拟的扭矩密度直接应用于我们的1D模型。这些扭矩密度允许建模最初的低质量行星的轨道演变,该行星经历了失控的核心,成为一个巨大的行星。包括圆盘和行星之间角动量的双向交换。这导致了对间隙形成的自洽处理,仅依赖于直接访问的光盘参数。我们提出了一个在圆盘限制政权中的粘结和山燃气积聚的公式。这种公式是自吻的,因为将质量从积聚的位置中的光盘中删除。 我们发现,在1D框架中,质量和半轴轴的演变与一系列参数的3D流体动力学模拟的分析非常吻合。 我们的处方对于同时建模1D模型中的迁移和积聚很有价值。我们得出的结论是,在1D模型中应用流体动力模拟的扭矩密度至少在我们在这里研究的参数空间中是合适的。为了确定我们的方法是否也适用于更宽的参数空间,以及圆盘热力学更复杂的情况,还是盘是自我磨损时,需要进行更多的工作。

We aim to develop a simple prescription for migration and accretion in 1D disc models, calibrated with results of 3D hydrodynamic simulations. Our focus lies on non-self-gravitating discs, but we also discuss to what degree our prescription could be applied when the discs are self-gravitating. We study migration using torque densities. Our model for the torque density is based on existing fitting formulas, which we subsequently modify to prevent premature gap-opening. At higher planetary masses, we also apply torque densities from hydrodynamic simulations directly to our 1D model. These torque densities allow modelling the orbital evolution of an initially low-mass planet that undergoes runaway-accretion to become a massive planet. The two-way exchange of angular momentum between disc and planet is included. This leads to a self-consistent treatment of gap formation that only relies on directly accessible disc parameters. We present a formula for Bondi- and Hill- gas accretion in the disc-limited regime. This formula is self-consistent in the sense that mass is removed from the disc in the location from where it is accreted. We find that the resulting evolution in mass and semi-major axis in the 1D framework is in good agreement with those from 3D hydrodynamical simulations for a range of parameters. Our prescription is valuable for simultaneously modelling migration and accretion in 1D-models. We conclude that it is appropriate and beneficial to apply torque densities from hydrodynamic simulations in 1D models, at least in the parameter space we study here. More work is needed to in order to determine whether our approach is also applicable in an even wider parameter space and in situations with more complex disc thermodynamics, or when the disc is self-gravitating.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源