论文标题

利用配体添加性,用于在已知的过渡金属配体配体的多段性特征的可转移机器学习

Exploiting Ligand Additivity for Transferable Machine Learning of Multireference Character Across Known Transition Metal Complex Ligands

论文作者

Duan, Chenru, Ladera, Adriana J., Liu, Julian C. -L., Taylor, Michael G., Ariyarathna, Isuru R., Kulik, Heather J.

论文摘要

过渡金属配合物(TMC)的准确虚拟高通量筛选(VHT)由于可能具有高度多引用(MR)特征而使属性评估复杂化的可能性仍然具有挑战性。我们计算剑桥结构数据库(CSD)中先前合成的过渡金属复合物中存在的5,000多个配体的MR诊断。为了完成这项任务,我们引入了一种迭代方法,以使CSD中的配体的配体指控分配一致。在此集合中,我们观察到MR字符与分子中所有键的平均键顺序的反值线性相关。然后,我们证明了MR字符在TMC中的配体添加性,这表明可以从配体的MR特性总和中推断出TMC MR字符。在这一观察结果的鼓励下,我们利用配体添加性并开发了配体衍生的机器学习表示形式来训练神经网络,以从成分配体的性质中预测TMC的MR特征。这种方法产生了具有出色性能和出色转移性的模型,以表现为看不见的配体化学和组成。

Accurate virtual high-throughput screening (VHTS) of transition metal complexes (TMCs) remains challenging due to the possibility of high multi-reference (MR) character that complicates property evaluation. We compute MR diagnostics for over 5,000 ligands present in previously synthesized transition metal complexes in the Cambridge Structural Database (CSD). To accomplish this task, we introduce an iterative approach for consistent ligand charge assignment for ligands in the CSD. Across this set, we observe that MR character correlates linearly with the inverse value of the averaged bond order over all bonds in the molecule. We then demonstrate that ligand additivity of MR character holds in TMCs, which suggests that the TMC MR character can be inferred from the sum of the MR character of the ligands. Encouraged by this observation, we leverage ligand additivity and develop a ligand-derived machine learning representation to train neural networks to predict the MR character of TMCs from properties of the constituent ligands. This approach yields models with excellent performance and superior transferability to unseen ligand chemistry and compositions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源